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Natural Frequency and Mode Shape Sensitivities of Non-Proportionally

Damped Systems: Part I, Multiple Natural Frequencies
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Abstract

An efficient algorithm whose numerical stability is proved is derived for computation of eigenvector
derivatives of non-proportionally damped vibratory systems with multiple eigenvalues. In the proposed
method, adjacent eigenvectors. and orthonormal conditions are used to compose an algebraic equation
of order n+4m, where n is the number of coordinates and m number of multiplicity. The mode shape
derivatives of the damped systems can be obtained by solving the algebraic equation. As an example
of a structural system to demonstrate the theory of the proposed method and its possibilities in the
case of multiple eigenvalues, the 5-DOF. mechanical system is considered. The design parameter of the
system is a spring. .
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1. INTRODUCTION ‘ and mechanical systems with multiple natural
frequencies have been a focus of recent inte-

The eigenpair sensitivities of a structural rest. In typical structural or mechanical syste-
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ms, there are many multiple or nearly equal
natural frequencies, due to their structural
symmetries or certain reasons. In this case,
since eigenspace spanned by the mode shapes
corresponding to the multiple natural frequen-
. cies is degenerate, any linear combination of
mode shapes can be a mode shape. Since the
multiple natural frequencies cause the de-
crease of the rank of the matrix .equation
used in sensitivity analysis, it is more difficult
to get the sensitivities of eigenpairs of a
system with multiple natural frequencies than
the case of distinct natural frequencies. A
number of papers”~® were presented to find
the mode shape derivatives in the case of
multiple natural frequencies. To find the
derivatives of mode shapes, the adjacent
mode shapes must be first calculated which
lie "adjacent” to the m (multiplicity of multiple
natural frequency) distinct mode shapes ap-
pearing when a design parameter varies. To
do so, the approximate mode shapes could be
varied continuously with varying the design
parameter. For the real symmetric case, a ge-
neralization of Nelson’s method® was obtained
by Ojalvo” and amended by Mills-Curren®
and Dailey”. Dailey’s method is an exact ana-
lytical method for calculating the derivatives
of mode shapes with multiple eigenvalues.
This method only requires the knowledge of
eigenpairs to be differentiated, however, the
method is lengthy and complicate. Dailey's
method is extremely complicate for calculating
the sensitivity of eigenvectors of multiple ei-
genvalues in the case of the damped systems.

In this paper the algebraic method for cal-
culating the derivatives of mode shapes
worked by Lee and Jung”® is extended to
the non-proportionally damped systems with
multiple natural frequencies. In the case of
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multiple eigenvalues as well as distinct ones,
the proposed method can find the mode shape
derivatives by solving an algebraic equation
with symmetric coefficient matrix added with
side conditions. The orthonormal condition
and a set of adjacent eigenvectors can be
used in the algebraic equation as side conditi-
ons.

The second section of this paper presents
the proposed sensitivity analysis method of
damped systerms with multiple natural freque-
ncies. The third section presents numerical
stability of the proposed method, and the next
section numerical examples.

2. SENSITIVITY ANALYSIS OF DAM-
PED SYSTEM WITH MULTIPLE NA-
TURAL FREQUENCIES

When a natural frequency has multiplicity
m and a design parameter is perturbed, the
corresponding mode shapes may split into as
many as m distinct mode shapes. For deriva-
tives of the mode shapes to be responsible,
the mode shapes must be lain adjacent to the
m distinct mode shapes that appear when a
design parameter varies. Otherwise, the mode
shapes would jump discontinuously with vary-
ing design parameter. Therefor, the first step
in finding derivatives of mode shapes of mul-
tiple eigenvalues is to find corresponding
adjacent mode shapes.

The eigenvalue problem associated with a
damped system, in the case of multiple eige-
nvalues, can be expressed as

M®,.Al + CO.A. + KO, =0 1)

where M, C and K are the matrices of mass,
damping and stiffness respectively, and these



are order n syrametric matrices. M is positive
definite and K positive definite or semi-posi-
tive definite. A. is a eigenvalue matrix having
eigenvalues, A.’s, of multiplicity m on its diag-
onal, and @®, is the matrix of eigenvectors
corresponded to the multiple eigenvalue hence
its order (nXm). As referred in Part I, the
orthonormal condition for the matrix ®. is as
follows :

®.2AM+C)®, = L. (2)

The eigenvector matrix ®. can not be used in
calculating the derivatives of eigenvectors
since it is not a set of adjacent eigenvectors,
generally. The adjacent eigenvectors can be
expressed in terms of ®, by an orthogonal
transformation such as

X=e,T 3

where T is an orthonormal transformation
matrix, T"T =1L, and its order m. The col-
umns of X are thé adjacent eigenvectors. It is
natural that the adjacent eigenvectors satisfy
the orthonormal condition too ;

X"(22M+CO)X=T"®L21.M+C)®,T
=T'T =1, 4)
The next procedure is to find T and then to

find X. Consider the following another eigen-
value problem.

MXAZ+CXA,+KX=0 | ®)
Differentiating the above eigenvalue problem

with respect to the design parameter p, and
rearranging yield

1ES P70l Y

. X _ A
M+ .C+K] o (2&M+C)—ap

—(poM  , 0C , K
(’L"ap oy T ap)x ()
Premultiplying at each side of equation (6)
by @, and substituting X=@,T into it give
new eigenvalue problem such as

_ om0Aas
DT = ET—a b (7)
where
—_rfpzoM | , 9C , JK
D—qam(/tnap +age ap)cpm and
E=—-®,(22M + C)®, = — I, 8

One can obtain the eigenvalue derivative dA../
dp and orthogonal transformation matrix T by
solving equation (7), and then the adjacent
eigenvectors by relation X=a,.T.

The proposed method starts with equation
(6) and equation (4). Differentiating the
orthonormal condition, equation (4), with re-
spect to design parameter gives

70X,

ap XA,

T X _ _
X'(24.M+C)7 ).

—X"MX A _1x70C
XTMX %=~ X5 9

One can write the following single matrix
equation by combining equation (6) and
equation (9).

M+ AC + K (2/1.,.M+C)+X]
0

X
X7(2AM + C) a(f

_ OAm _ [, IM 2C E)
(2M + OX % (z.nap + age + S

rOMyp — xTMxIAn _ LygrdC

X op ap 27 9p

(10)

HREARxESlE| =28 122 M15399. 3 105



5 2fXE %

rr

vul ) A9 nA-A 2 A E o

1

The derivatives of the adjacent eigenvectors,
0X/dp, can be found by solving equation
(10). The coefficient matrix in the left-hand
side of equation (10) is always nonsingular
~ (see the next section)

Note that the proposed method has the de-
sirable properties of preserving the structure
of the system matrices, and of requiring
knowledge of only multiple eigenpairs. Note
also that the proposed method needs the first
order derivatives of the mass, damping and
stiffness matrices, whereas Dailey’s method
needs the first and second derivatives of
them.

3. NUMERICAL STABILITY OF THE PR-
OPOSED METHOD

Identifying the nonsingularity of the coeffi-
cient matrix A’ in equations (10) and (11)
may prove the numerical stability of the pro-
posed method in the case of multiple eigenva-

lues.

A= [EM+ACHK  (24M+C)X (11

X"(24.M+C) 0
To show that the coefficient matrix A" is
always nonsingular, consider another matrix
such as Y'A'Y where Y is a (n+m) X (n+m)
nonsingular matrix. In this paper, the matrix

Y is assumed as
w0
Y = [ . L (12)

where I. is an identity matrix of order m and
¥ is a set of arbitrary independent vectors
containing the adjacent eigenvectors of multi-
ple eigenvalue A. of the system, as follows

106 si=rFippxRsts| =28 H123 M1Z(1999.3)

a4

'\I’:[(ﬁl (//2 ¢n—m X1 Xz Xm] when

X:[XI Xz "t Xm] (13)

where ¢’s are arbitrary independent vectors
chosen to be independent to the adjacent ei-
genvector x’s. Pre- and post-multiplying Y™
and Y to A’ yield

YT (M +A,C+M)¥! ¥T(2LM+C)X)
XT(2WM+C)¥ i 0

Y'AY =
(14

Considering the eigenvalue problem (EM+A.C
+K)X=0yields

\If’()ﬁ.M+/LnC+K)\If=[13 (‘)’ (15)

where A is non-zero (n-m) X (n-m) subma-
trix. The submatrix A is a nonsingular matrix,
det(A)+0, having order of n-m and rank of
n-m, since it is given by eliminating the col-
umans and rows having all zero elements from
Y(EM+AC+EK)Y of order n and rank n-m.
The orthonormal condition yields

(=

\FT(ZA,.M+C)X=[ ] and

b
3

o

x%mmm)w:{ } (16)

.

where B is generally non-zero rectangular
matrix. Substituting equations (15) and (16),
into equation (14) yields

A 0 B
Y'AY=|0 0 L (17
B” 1. 0

By applying the matrix determinant property
of partitioned matrices, the determinant of
can be rewritten as



det(YTA'Y)=det ¢ I"']

L. 0

~ ~ 10 L1 0
det(A—[o B] L 0 [ET]) (18)
or
det(Y?A'Y)=det(A)#0 (19)

The determinant of A’ thus is not equal to
zero because det(YTA'Y)=£0. The proof is
completed mathematically for the numerical
stability of the proposed algorithm in the case
of multiple eigenvalues.

4. NUMERICAL EXAMPLES

An analytical example to verify the pro-
posed method, primary and secondary -systems
equipped on the rigid square plate with the 5
-DOE mass, spring and damper showed in

'Fig. 1 is considered. Assume that only the
vertical vibrations ‘are- allowed. As shown in

Fig. 1 5-DOF non-proportionally damped system.
my=200kg, m,=500kg, ms=1000kg ;
k,=10000 N/m, k,=20000N /m,
ki=k,=ks=ke=1000 N/m  c,=4Ns/m,
¢;=6Ns/m, cs=c,=cs=cs=40Ns/m ;

the following analysis results, the initial struc-
ture has multiple eigenvalues due to its struc-
tural symmetry. The lumped dampers cause
the non-proportional damping matrix in the
equation of motion.

Some results are summarized in Table 1.

Table 1 The natural frequencies of the initial and changed primary and secondary system, and results of

the sensitivity analysis.

Mode Initial System Changed System Variation of Eigenpair Error of Approximation

umber Figenvalue Egﬁgﬁ;ﬂ:: Eigenva}ue Ag;i)gr;};i,r:lit:d Eigenvalue Eigenvector | Eigenvalue Eigenvector
12 iif%%zzgi(ioz i%f?{;%;iq@v‘ ﬁzﬁgﬂé ;sz%iﬁowi LIBI3X 107 | 46721x 10 | 81631107 | 2.0463X 1075
3 4 fjgﬁ;&; ioj'(%i%ﬂ ;ﬁ%ﬁ‘i(}; i2]§(310505;>1<0101° 0.0000X10° | 0.0000X10° | 0.0000x10° | 00000 10°
5,6 ;éﬁ%%:i%, i?fggffﬁf;q fjg‘i%%gi%o f}g‘i%%;iololﬂ 25039107 | L5461x 107 | 2163210 | 52014x 107
7,8 2?21%251(;%0 ijzggggexxlfo: ::3322113%;;(;(;“ fjg%%;xmmz 48257X 1075 | 1.0987x107* | L1763X 107" | 2.5394x107°
9,10 ::23357%%3&01(; ;fggglxxlﬁ; ;igi%iﬁoi f)gi%%giowi 5.1624x107° | 19422x107* | 4.3893X107° | 1.6332% 1077
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Table 1 shows the eigenvalues of the system
and their sensitivities when design parameter
is k. Note that the second and third eigenval-
ue conjugate pairs are multiple respectively.
The derivatives of the multiple eigenvalues are
different since the design parameter is the
spring ks ; when ks is varied, the multiple ei-
genvalues are split into distinct ones since the
structural symmetry is broken. It is natural
that the second eigenvalue conjugate pair has
zero derivatives, since corresponding eigenve-
ctors have zero displacements on %k and so
the variation in k& makes no effects on the
modes. The exact and approximated eigenva-
lues of the system after changing k by Aks/
k=0.01 are represented in the fourth and
fifth columns of the table. The last four col-
umns are variations of exact eigenpairs and
errors of the approximate eigenpairs. Since
the sensitivities of the second and third eige-
np’éirs are equal to zero, the second and third
eigenpairs are not changed. Considering that
the errors of the approximate eigenpairs are
relatively smaller than the variation of ks, the
approximate eigenvalues and eigenvectors of
the changed system are reasonable. Conseque-
ntly, one can say that the proposed method
gives good results.

5. CONCLUSIONS

This paper proposes an efficient numerical
method for calculating vibration mode shape
derivatives of the non-proportionally damped
systems with multiple eigenvalues. The method
finds eigenpair derivatives of the systems by
solving the linear algebraic equation without
any numerical instability. The proposed meth-
od is very efficient in the case of the multiple
eigenvalue problems since the computer stor-
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age and analysis time are saved in comparison
with Dailey’s method, since our method does
not use second -derivatives of the system ma-
trices while Dailey’s method does. The pro-
posed method is simpler than any other meth-
ods and gives exact solutions. The proposed
method may be inserted easily into the com-
mercial FEM code since it finds the exact so-
lution and treats symmetric matrix. Further-
more, its algorithm is very simple and its nu-
merical stability proved.
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