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Nonlinear Dynamic Analysis of Deep Water Riser by the Utilization of
the Kinematic Constraint Condition
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Abstract

The kinematic constraint condition on unit tangent vector of deflected riser is utilized in the
nonlinear dynamic analysis of deep water riser. This does lead to the reduction of the degrees of
freedom and remove the possibility of the divergence in solutions. The riser system accounts for the
geometric nonlinearity due to large structural displacements and the nonlinear boundary conditions. And
also, it includes a steady flow inside the pipe which is modeled as an extensible or inextensible,
tubular beam subject to nonlinear hydrodynamic loads such as current or wave excitation. The matrix
equation of equilibrium for the finite element system is constructed by applying Galerkin finite element
approximation and the time incremental operator and then, the algorithm for numerical calculation is
proposed. The validity of proposed model is given through the comparison with the results from API
reports. Also, the effect of geometrical nonlinearity is examined.

Keyword : Kinematic constraint condition, Deep water riser, Geometric nonlinearity

1. Introduction becomes deeper, the displacements of a riser

(Fig. 1) will become larger. Therefore, it is
In offshore operation, as the water depth desirable to consider the nonlinearities due to
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Fig. 1 Configuration of riser system

large displacements for the riser analysis.
The nonlinearities are mainly of two origin
that results from flow-induced forces and from
geometric nonlinearities due to large structural
deflections. The later becomes particularly
significant for long risers. Such nonlinearities
are from large deflections and slopes, three-
dimensional bending, extensibility, torsion,
dependency of the hydrodynamic loads on the
riser deformation and nonlinear boundary
conditions.

There are considerable efforts made over
the years to this problem. The equations for
large amplitude three dimensional inexten-
sible motions of beams were derived by
Nordgrenl), with the assumption of constant
principal moments of inertia, negligible rota-
tory inertia, and the uncoupled torsional
motion. Bruce and Michael” described a
mathematical model and solution technique
for a system with coupled dynamic axial and
lateral responses of a riser column. Fellipa
and Chung‘g) implemented a finite element
method for solving nonlinear static equilibrium
configurations of deep water risers. Also, a
transient analysis was developed by Chung”
for the determination of nonlinear motion by
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considering nonlinear static configuration as
an initial condition. Garett® presented a three
dimensional finite element model of an
inextensible elastic rod with equal principal
stiffness. The model permitted large deflect-
ions and finite rotations and accounted for
tensional variation along its length. Konuk®
provided a general foundation for developing
rigorous formulation of problems involving
marine pipelines with twist. Safai” developed
a method for automatically updating the
structural geometry during the dynamic analy-
sis for a system in which the bending, axial
and torsional vibrations are uncoupled. Kim
and Triantafyllou® studied the nonlinear
dynamics of long, slender cylinders assuming
moderately large deformations and no longi-
tudinal excitation modes. McNamara and Lane”
presented an efficient method based on the
finite element approach using convected coor-
dinates for arbitrary large rotations. Huang
and Chucheepsakulw) introduced a method of
static analysis for risers with a relative slippage
at the location of the slip joint. The method
introduced a modified functional involving
multipliers to account for the arc length being
unvaried with neglected tension, and used the
exact curvature of radius in their formulation.
Bernitsas and Kokarakis'’ formulated the
problem of static three dimensional nonlinear,
large deformation response of a riser within
small strain theory and then solved it
numerically by using an incremental finite
element algorithm, in which predictor-
corrector scheme is involved. Later, they
(Kokarakis and Bernitsas)'? employed a pre-
viously formulated static model for the dyna-
mic analysis of riser and developed an
efficient algorithm. O'Brien and McNamara'®
developed a technique based on finite ele-
ment method by the separation of the rigid
body motions from deformations of element



under the condition of finite rotations.
Hongw'w) proposed a mathematical model
with the inclusion of internal flow and the
aforementioned nonlinear effects and then
solve it numerically by using Newton Ra-
phson iterative procedure.

Most of aforementioned papers use the arc
length as the independent variable to formulate
the problem. In analysis the use of the arc
length as the independent variable may cause
complexity in setting up problem. This com-
plexity may lead to the necessity for a large
number of iterations to obtain a single solution
numerically. These iterations are divided into
two groups. The first one involves the solution
of a set of nonlinear algebraic equations
associated with the geometric nonlinearity.
The second group of iterations arises from
the boundary condition. The problem may be
solved by estimating a riser length measured
from the well head, then finding the hori-
zontal displacement at the elevation of the
top joint by either the finite element method
or finite difference method. If the horizontal
displacement does not correspond to the locat-
ion of the joint, estimate again the riser
length and repeat the process until the error
at the boundary is negligible. The estimations
of the riser length constitute the second group
of iterations. It is apparent that each iteration
in the second group requires a number of
iterations of the first group.

The purpose of this study is to propose a
method of analysis in which the complexity
mentioned above is completely eliminated. The
kinematic constraint condition on unit tangent
vector of deflected riser is utilized. This does
lead to the reduction of the degrees of
freedom and remove the possibility of the
divergence in solution due to the iteration of
highly nonlinear terms.

In the analysis presented herein only two

4

dimensional cases are considered, although
the methodology developed can be readily
extended to three dimensional cases. The riser
system accounts for the nonlinear effects due
to large structural displacements and from
the nonlinear boundary conditions, and includes
a steady flow inside the pipe which is modeled
as an extensible or inextensible, tubular beam
subject to nonlinear hydrodynamic loads such
as current or wave excitation. The matrix
equation of equilibrium for the finite element
system is constructed by applying Galerkin
finite element approximation and the time
incremental operator and then, the algorithm
for numerical calculation is proposed. The
validity of proposed model is given through the
comparison with the results from API reports.
Also, the effect of geometrical nonlinearity is
examined.

2. Governing Equations AND B.C.s

The main aspects of the curved geometry of
the system and the coordinate systems are
depicted in Fig. 2. In Fig. 2, ™
unit vector and hereafter boldface represents

indicates a

general vectors. The total bending moment, as
shown in Fig. 2, acts in the binomial di-
rection and is proportional to the bending
rigidity of the cross section EI, and the space
curve will be identified with the central axis
of the riser in the deformed state, with the
position vector, as shown in Fig. 2, repre-
sented as follows.

r= r0+s/Ae= x12+ x2;+(s+ xg)lAe (1)
where 1, is the deformation vector at any
point on the riser in the undeformed state.

In the classical theory of rods, the inter-
nal state of stress at a point on the rod is
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Fig. 2 Position vector at a point on the riser
centerline

fully characterized by the resultant force F
and the coupled moment M acting on the
central axis. Assuming that the distributed
coupled vector induced by the asymmetric flow
and rotatory inertia is negligible and that the
torsional couple H is independent of pipe
length, conservation of linear momentum and
angular momentum leads to the following
vector equation of motion.

—(EIr" )" +[(T.—El«>)r’ T
+H(r'xr”) +Fg+F; =m, r (2)

where Fr, F1 and m, are the applied

external hydrodynamic force, the force acting
inside the wall of riser by internally flowing
fluid, and the mass of riser per unit length,
respectively. Also, EI is the bending rigidity
of the cross section and H is the time
dependent torque. Prime(’) and dot(-) denotes
differentiation with respect to undeformed arc
length s and time, respectively. The effective
tension Te, which is the tangential component
of the internal force, is defined by
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[

Tez/t\'F (3)

Using the concept of Hamilton's principle,
Hong'” derived the fluid force acting on the
internal wall of the pipe by internally flowing
fluid and expressed in the following vector
form.

Fi =—m{( 1 +2V, ' +Vir") (4)

where Vi and mr are the velocity of inter-
nal flow and the mass of internal flowing
fluid per unit riser length.

No small-scale motions such as turbul-
ence or secondary flow are assumed to be
absent. And also, the plug-flow model with no
radial variation of velocity is utilized as a
fluid model for the internal flow. The first
term on the right represents the inertia force
associated with the riser acceleration. The
second term is the inertia force associated
with the coriolis acceleration which arise
because the fluid is flowing with velocity Vi
relative to the riser, while the riser itself has
an angular velocity at any point along its
length. The last term represents the inertia
force associated with the change in direction
of the flow velocity, owing to the curvature of
the riser.

The relative motion between the pipe and
the surrounding fluid produces hydrodynarmic
force composed of inertia, drag, and frictional
forces. The resultant total force distribution
Fe along the riser length is decomposed of a
normal force component, Fn, and a tangential
component, Fr. To perform this decomposition,
the relative velocity and acceleration is resolved
into components perpendicular and parallel to
the deformed riser axis. The relative velocity
vector between the pipe and the surrounding
fluid is given by



VR=VP_VC_VW=i'_VC_VW (5)

where Vp = pipe velocity vector, V¢ =
steady current velocity vector, and Vw = time
dependent wave velocity vector. Noting that
the current velocity is independent of time,
the relative acceleration of the pipe with
respect to the surrounding fluid is given by

VRZVP_sz;"Vw (6)

and its tangential and normal components are
given by

VRTZ(‘/.R‘ 2)2 and VI;N = VR - VRT
(")

Also we need the tangential and normal com-
ponents of wave-induced water particle acce-
leration to calculate wave induced force and
they are given by

Vyr=(Vy- D and Vgn = Vy — Vr
(8)

Chung4) neglected the tangential force com-
nent by skin friction and then, retained
only the normal force component as shown
in following form.

FexFy=— 0, (7rD,?/4)Ca VRN+ o0.(1D2/4)
Vi — 0DoCol Vin] Va2 9)

where | Ven |=[ Vi + Ve + Vi 12,
Ca = added mass coefficient, Cp = drag coeffi-
cient, Do = external diameter of the pipe, and
ow = density of water.

The first term of Eq. (9) is an inertia term
representing the force that is required to
accelerate the pipe with vrespect to the

ey

surrounding water. The second term is the
wave induced force. This force is produced by
the local pressure gradient that accompanies
the normal component of water particle acceler-
ation. The last term is the drag force that is
proportional to the square of the normal
velocity component and formed by the separation
of flow.

Substituting Egs. (4) and (9) into Eq. (2),

m,r+(EIr”)” — [(T.—El«?) 0] —H(r'xr")
= —m (1 +2Vir+ Vi)

— 0.,(7DE/4)Cx Ven + 0w (D2/4) Vg
—0,DoCp | Ven | Vrn/2 (10)

Lettlng Ao:ﬂ'D%/ll, mf=m,+m/+p,,,A0CA N

q:__%pchDO | Van | Vi +0uAo(14Ca) Vi

+0, AoCa(E 1)i—0, Ag(1+Co) (3- V)i
(11)

and then manipulating, we have nonlinear
governing vector equation shown as

myr+2m, Vir +mVit” +(EIt”)”
—[(T,—ElcB¥ V—Hrxr") =q (12)

For the completion of the mathematical
model, the boundary conditions have to be
specified. The boundary conditions for the
dynamic model of riser are usually time depen-
dent because of the motions of the supporting
platform. The riser support can be modeled by
substituting the linear translational or rotational
springs providing the restoring boundary
forces and moments. Typically the displace-
ment or the force vector and the unit tangent
vector, or the bending or torsional moment
has to be specified at each riser end. From
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the equilibrium of the forces at the top yields:

Fluz(TF)g' i— Kixp,

4

qu = (TF) 2 . ]_szzu
Fy=(TF)#+ k— Ky, + TTR (13)

In eq.(13), the subscript u and i(i=1,2,3)
indicates the upper end of the riser and X
direction respectively. TTR is the tension
applied at top of the riser by the tensioning
system and K;, Kz, K3 are spring constants
supplied by the restoring boundary force. Also
the effective riser tension at the top of riser
may be given approximately.

TF = p,gDX(Sy — 2)/4 — ppgmDH(S, —2)/4 (14)

where Sw = ordinate of the free surface of
water, Sm = ordinate of the free surface of
mud, ow and em are the density of water
and mud respectively, D, and Di are external
and internal diameter of the riser and z is
measured. from the lower ball joint, i.e., z =
s + Xs.

3. Matrix Dynamic Equilibrium Equation

The numerical model of governing equations
and boundary conditions is developed using
finite element method. Variational statement
for the boundary value problem is introduced,
that is, the weak form of governing equation
is derived. Sequentially, the incremental opera-
tor is applied to the weak form to give the
following equation(Hong4)'5) Bernitsas and
Kokarakis'").

i R by ., =
fo m; AT rdsﬁ-fo 2m; Vi A1’ -rds)

hi — N —
—fo m;Viar - r'dstO (EIar”) - 1’ ds,
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i

Ill — llv' p—

= J, (Te—Ew)ar -7 ds+ [ (F-ar)r s
by — hi

_fo (2EIr” - ar’)r - r')dst0 H(Arxr") r'ds
b —

+ fo H(r'xr”) - r'ds,

={-m;Viar+ aF}-r | Y4 Elar” T é"

B R S TS 5 e P (15)

I
where ;= fo (1+¢&)ds , I;=the length of i—th

element

This is the incremental weak form of the
governing equation and the quantities in front
of integrals are considered constants for each
element so that those terms may be factored
out of the integrals.

The construction of a finite element appro-
ximation of the problem, such as given in
(15), is based on Galerkin’s decomposition
method. Here, we replace (15) by a finite
dimensional problem to find the approximate
solution vector ry,. The nodal values of the

approximate solution are unknown functions
of time and consists of not only the deflect-
ions at the nodes, but also the rotations. In
other words, after constructing interpolation
functions on a suitable mesh, we take the
approximate solution to be of the form

ro=zxy i+ xui+(x+ )k and

5o 0= DrdONLs), =123 (16)

where x;x3 and xpxy represent the deflec-
tions and the rotations at node, and N; is the
basis or interpolation function. Having selected
the basis functions, the incremental form of
an approximate solution and the test function
can be written similarly



A

Ax(sy, )= li:\ Ax,(ON{(s1),
£als1, 0= B ONs) an

The substitution of (16), (17) into (15)
introduces the series form of the incre-
mental weak form. Manipulationg the series
form and writing them in a matrix form. we
obtain the following matrix equilibrium equation :

[M{2ax}+[CHx}+[KXax}={af}+{aF}
(18)

4. Utilization of Kinematic Constraint
. Condition

The utilization of the kinematic constraint
on unit tangent vector makes it feasible to
represent the vertical degrees of freedom in
terms of the lateral ones. This does lead to
the reduction of the degrees of freedom per
element from 12 to 8 and remove the possi-
bility of the divergence in solutions due to the
iteration of highly nonlinear terms in the
vertical degrees of freedom. Moreover, it can
be implemented as an another algorithm scheme
for the iteration due to nonlinear terms. For
the development of an algorithm, the deriv-
ation of the incremental form of the extensi-
bility condition is necessary because the equations
of equilibrium for a finite element system in
motion to be solved is of the incremental form.

Using the kinematic constraint on unit tan-
gent vector of riser, i.e. f-f =1 -1t =1, we
have the following relationship :

2 i x P (g + 1/ (L +e))i=1 (19)

Applying the incremental operator A on
above equation. We obtain

AxSI = (xl'Axl' —I—xZ’AxZ')(X;;’ + 1/(]. + Et))V1

+oefl+te) ? (20)
also, we have

T.=F:-{=F-r1r'=
(21
Fixy' + Foxy' + Fa(x3" +1/(1 +e))

Applying the incremental operator on Eq. (21).
We get

ATE= Alel"‘l" AFQ.?CQ"" AFg(JCg"f’l/(‘f’Et))
+ FXAX1'+ FZA.?C2’+ Fgﬂx‘g"— F3A65(1+€/)72
(22)

Also, we have

T.=EAe + 0,Ag(S, —S— x3) — 0,.A;8(S,,— S— x3)
(23)

Applying & again on Eq. (23). we obtain

AT.=EAng— A x38(0,A0— AP (24)

Eliminating ATe from Egs. (22) and (24), we
compute A g

Ag =

{AF %"+ AaFx + AF (a3’ +1/(1+¢e)+F, 2x)
+Foax +F38 x5+ 5 x38(0,4,— 0wd i}/
{EA+F;(1+¢&) %) (25)

Substituting Eq. (25) into Eq. (20) and
solving for 4x3", we obtain

x108x; Fx30 x5
xy +1/(1+e,)

nxy =[14+—22 -
BTV T EA(Lfe)? )[
1

+ EA(l+e&)?+F,

{A lell +A Fz.’ng'

EMATRTEE =2 123 H35(1999.9) 501
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AF3(X3'+1/(1+51‘))+ Alell‘f' Aszz’
+ 4 x38(0 A0~ AN} (26)

In addition to Eq. (26). we also have

Axg= fo axy dsy
X3’ =(1—xl'z—x2'2)1/2—1/(1+6,)

x3=x3(0)+f0] x5’ ds; (27)

As stated earlier, the vertical degrees of
freedom can be computed in terms of the
lateral ones. For each load increment the
kinematic relations, Eqs. (26) and (27), are
used to remove the vertical degrees of free-
dom from global matrix equation of equili-
brium. They are used again after the solu-
tion of the reduced system of equations has
been achieved. During prediction phase,
%3, %3, £x3, Axg’ are computed using Eqs. (26)
and (27). In addition, during the prediction
phase equation (18) are used to compute
x1, 217, Dxg, Axy’, Axy, Axy . During the correc-
tion phase x5, %3, Axs, Axy’ are recomputed
using Eqs. (26)-(27) and all deformation depen-
dent matrices, the equivalent nodal forces, the
boundary conditions, and the lengths of elements
are corrected. Further x, x,", Axy, x3, x3', Axy, By
are recomputed using Eq.(18). This scheme is
repeated until convergence is achieved for
each load increment. The algorithm is summ-
arized in Fig. 3.

5. Numerical Application

The algorithm described in the previous
chapter is implemented to solve the incre-
mental form of the matrix equilibrium equa-
tion and to avoid the possibility of diver-
gence due to iterations and to improve con-
vertgence rate, and computer program is

502 stzARZEES| =27 H123 XM35(1999.9)

written. For the purpose of investigating the
validity of the suggested model in this paper,
Results of analysis using the riser program
are compared to the published results from

18) A two dimen-

eight other programs in API
sional model is adopted as in the API report,
and Morison’s formula extended for a moving
structure based on the relative velocity between
the riser section and the fluid is employed to
approximate the fluid drag force. The investi-
gated example is concerned with the same type
of riser with an external diameter of 40.64cm
(16 in), the water depth of 152.40m, and top
tension of 53.4 dN. A wave of 6.096 m of
amplitude and a period of 9 sec is applied and
the prescribed horizontal displacement at the
head of the riser varies sinusoidally with the
same period as the wave. As for the tension
at the head, it is assumed to be constant
during the dynamic calculation. In Fig. 4,
envelopes of minimum and maximum hori-
zontal displacements by the present method
are compared with the results published in
API and show good overall agreement.

Also, the comparison of the results obtained
from well-known linear model with one from
the developed nonlinear model is given. It is
well known from previous studies that the
nonlinear effects due to large structural deflect-
ions and nonlinear drag damping become
significant as riser length increases or internal
tension decreases. On the contrary, the nonlinear
effects disappear for the riser with high tension
and short length. In this paper, linear model
and nonlinear model are both run using the
same riser with parameters listed in Table 1,
and then compared with each other to see the
difference between linear model and nonlinear
model due to the change of riser length. The
flow field is generated by a linear wave (Hw=
6.1m, Tw=7.8sec) and a uniform current (U=0.4
m/sec) with an right angle to each other.
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Fig. 3 Solution algorithm
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Fig. 5 plot time simulations of displace- ment at
the middle of the riser in current

direction, respectively. Two different length of
risers, one long(152m) and the other one
short(91m),

bottom tensions. From those figure, the reduc-

are used with same top and

tion of nonlinear effect on the short one can
be seen. Also, from those time simulation
plots, the nonlinear effect in the long riser
causes change of the system frequency. The
displacement shapes at a specific time are

presented in Fig. 6 and 7 for current and

— — — — Present wark

Envelope of the API results
Height abowve BOP (m)

152 —

122 —

91 —

61 —
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0 |
aoo 152 305 457 600
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Fig. 4 Comparison with APl cases
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Fig. 5 Time simulations of the displacement at the

middle of riser in current direction.
(Dashed Line = Nonlinear Model, Solid Line
= Linear Model)

Table 1 Design properties and data for a drilling riser system

Outside diameter D = 0.61 m with 16 mm wall thickness

Constant of elasticity E = 2.1 x 10° kg/em®

Sectional moment of inertia I = 131018 cm*

Riser mass m = 10 kg/em(include mass of drilling mud and sea water)
Bottom tension TTB = 1200 kN

Effective weight per unit length w = 3.86 kN/m

Mean Tension T,= 1453 kN

Density of drilling mud om = 1.36 t/m®

Density of sea water ow = 1.036 t/m’
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wave direction, respectively. The displace-
ment shape in current direction are plotted at
time=200sec after the riser reaches the static
state, while the shapes in wave direction are
plotted at an arbitrary time when the dis-
placement at the middle point of riser is near
the positive peak. The difference between
linear and nonlinear models grows as riser
length increases. The nonlinear effect appears
to stiffen the riser for current loading but
soften it for wave loading. These trends are
also found from previous study(Kokarakis and
Bernitsasl2)). Fig. 8 shows the maximum
displacement in the wave direction according
to the change of wave frequency. The responsein
the wave direction also shows resonant peaks
near the system frequencies but the magnitudes
are drastically reduced for higher frequency
wave. This phenomenon seems to result from
the fact that the wave velocity distribution in
water depth decays faster for shorter frequency
waves.

Trajectory of displacement at the middle of
riser is presented in Fig. 9. In this figure,
the riser responds to current at a right angle
to wave direction after a steady oscillating
state in wave direction has been reached and

075

0.50 —

0.25 -

Maximum Displacement in Wave Direction (m)

0.00
0.0 0.5 1.0 15 20 25 3.0 35
‘Wave Frequency (rad/sec)

Fig. 8 Maximum displacement in wave direction
according to the change of wave
Freqguency(Hw=6.1m)
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the top tension ratio(TR=Top Tension/wL) is
changed from 2.6 to 1.2 for the reduction of
stiffness term. Since a high velocity of current
(U=1.5m/sec) and a reduced top tension (TR=
1.2) are selected, it can be seen clearly from
the figure that the oscillation of riser in
current direction reaches a static state within
2 to 3 cycles with the longer period. In
addition, it can be recognized from the figure
that the time trajectory shape is transformed
into more regular shape because of a wave
with relatively low period (Tw=4sec) in this
application. This trend of time trajectory can

be also found in Mcnamara’s studylg).

6. Conclusion

In order to eliminate the complexity in the
nonlinear dynamic analysis of riser, the kine-
matic constraint condition on unit tangent
vector of deflected riser is utilized. This does
lead to the reduction of the degrees of freedom
and remove the possibility of the divergence
in solution due to the iteration of highly
nonlinear terms.

The riser system accounts for the nonli-
near effects due to large structural displace-

)
o
1

-
[3,]
T

o
[4,]
T

placement in Current Direction (
—
o
:

Dis,

! 1 ' |

0.0
-0.050 -0.025 0.000 0.025 0.050
Displacement in Wave Direction {m)

Fig. 9 Time trajectory at the middle of a
152m riser(Hw=6.1m).
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ments and from the nonlinear boundary
conditions, and includes a steady flow inside
the pipe which is modeled as an extensible or
inextensible, tubular beam subject to non-
linear hydrodynamic loads such as current or
wave excitation. The incremental matrix
equation of equilibrium is constructed and the
algorithm for numerical calculation is proposed.
From the results of sample computations, it
is found that the effect

nonlinearity becomes increasingly more im-

of geometric

portant for risers in deeper water and that
the linear model underestimates the displace-
ment as compared to nonlinear model.
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