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Wavelet-Galerkin Scheme of Inhomogeneous Electromagnetic
Problems in the Time Domain
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Abstract

A wavelet-Galerkin scheme based on the time-dependent Maxwell's equations is presented.
Daubechies’ wavelet with two vanishing wavelet moments is expanded for basis function in spatial
domain and Yee's leap-frog approach is applied. The shifted interpolation property of Daubechies’
wavelet family leads to the simplified formulations for inhomogeneous media without the additional
matrices for the integral or material operator. The stability condition is formulated. The dispersion
characteristics are analyzed and compared with those of finite difference time domain and
multiresolution time domain methods. The analyses show the excellent trade-off between the
regularity and the support width of the basis function. Although the basis function has only two
vanishing wavelet moments, it is enough to provide negligible dispersive error in the numerical
analysis and its compact support enables only several involved terms per nodes. The storage
effectiveness, execution time reduction and accuracy of this scheme are demonstrated by calculating
the resonant frequencies of the homogeneous and inhomogeneous cavities,
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Wavelet-Galerkin Scheme of Inhomogeneous Electromagnetic Problems in the Time Domain

1. Introduction

Recently, methods employing numerical an-
alysis based on wavelet to investigate the wave
propagation characteristics of structures have
attracted the attention of many researchers.
Among them, the multiresolution time domain
(MRTD) method™™ shows an excellent capa-
bility to approximate the exact solution even for
near Nyquist sampling limit while the traditional
Yee algorithmm needs 10 or more grid points
per wavelength.

In the MRTD scheme, however, integral equ-
ations have to be evaluated for inhomogeneous
media'", Moreover, when the required data are
sampled and source is applied, many terms of
the field components are considered™ . This is
due to the nonlocalization characteristics of the
cubic spline Battle-Lemarie wavelet function.
As an alternative basis, compactly supported
wavelet is possible to make the considered terms
reduced. For the inhomogeneous electromagnetic
problem, wavelet-Galerkin (WG) method with
compactly supported Daubechies’ wavelet was
derived by M. Werthen and L Wolff™* Their
approach need not the integral equations but
the operator of the material distribution and a
few terms of the field components are con-
sidered in sampling and source embedding.
However, it has two disadvantages. At first, in
contrast to MRTD and finite difference time
domain (FDTD) schemes, the unknown field
components are redundant because the BCR co-
efficients™ are directly used. The second dis-
advantage is that the additional operator still

exists for the calculation of the material dis-

tribution. To overcome these drawbacks, the
derivative filter coefficients need to be re-
vcalculated at integer and half translation and a
simple sampling technique should be applied.

In this paper, both transient and Fourier
concerns are formulated from the inner product
of scaling function and its first-order derivative,
And the shifted interpolating property of Dau-
bechies” wavelet family[ﬁj is adopted to achieve
the pure and simple sampling procedure,

This scheme is tested with the trial function
of Daubechies’ tap-4 wavelet in single channel
approach. Maxwell's curl equations are formulated
through Galerkin procedure. Related dispersion
characteristics are derived and compared with
FDTD and MRTD correspondents. And then the
numerical experiments in a homogeneous and
three inhomogeneous resonant structures are im-
plemented and compared with those of FDTD.
These results show that WG scheme based on
leap-frog and shifted interpolating techniques is
very feasible for the inhomogeneous electro-

magnetic scattering problems,

II. Theory

A multiresolution analysis of L*(R) is defined
as a sequence of closed subspaces V; of LXR),
7 =Z. with the following propertiesmi

1. Vv,CV,.,,

2. flx) eV, s f(2x) €V,

3 )y eVye fx+]) eV,

4. U V; is dense in L*(R) and

j=—c0

i[l Dg

; - Vj = {O}.

5. There exists a scaling function ¢ eV,
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with a nonvanishing integral, such that
{@(x— k)} 4oz is a Riesz basis of Vj.

As an orthogonal complement of V; in
Vi+1. the subspaces W, are defined as

Vier= V;‘(’BW} )]

and the space L*(R) is represented as a direct
sum,
LXR)= D W,. (2)
j€Z
Since ¢V, CV,. a sequence h,<(Z)

exist such that the scaling function satisfies
() =23 hy 92— ). (3)

This recursive equation is fundamental to the
theory of the scaling function and referred to by
several different names: the refinement equation,
the dilation equation, the multiresolution analysis
equation, or the two-scale difference equation,
The collection of functions { ¢; ,| 7, k< Z}, with
¢, (20)=2"0(2x— k), is a Riesz basis of V.

Similarly, a wavelet function is defined such
that the set of functions { ¢; .|/, k< Z}. with
¢ () =2"22’x— k) is a Riesz basis of W,
Since the wavelet ¢ is an element of Vi, a

sequence g, </ (Z) exists such that
¢(x)=2; g o(2x—F). (4)

Suppose we consider only finite scale ex-
pansions in terms of scaling or wavelet functions
which is what happens in practice, If we let for

fixed scale j =0,

Ax)= ; Co.x Po, (%), (5)

552

then # is a wavelet interpolation of original
function f(x) at the subspace V. From (1),
we can reexpress f in terms of scaling and

wavelet functions at coarser scales,

Hx) = ; o,k o 1(x) = Z ik @ o i)

+§]=ﬁ] dip¥;x(x)  for 7y<0. (6)

The wavelet representation of a sampled fun-
ction of the form (5) allows one to use the
scaling functions at a given scale as finite element
or Galerkin-type basis functions in a discrete
approximation to some continuous problems[gj.
The multiscale representation of data is also
available as given in (6) to implement multigrid
iterative schemes for solving hyperbolic boundary

problems[ll.[zﬂ.[Q].

There are some algorithms
needed for partial wavelet embedding in terms
of an adaptive grid scheme. Without such
scheme, there is a considerable increase of
execution time, which is due to the interactions
between the fine and coarse scales such as
Vi> W, W—V, oo W— W,'-[SJ. In order to
reduce the interactive terms and related
coefficients, thresholding algorithm is generally
appliedm'[gj. It results in the reduced execution
time in the calculation of total nodes. On the
other hand, this scheme leads to the increase in
the complexity of a given method and takes an
additional time to determine thresholding criteria.

We will take single channel scheme only with
scaling functions at an adequately fine scale.
Instead of the loss of the facet of multiresolution
analysis and its adaptive gridding property, all
routines are simplified and maintained in a uni-

que form, and simple interpolation scheme is
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usable. If one may choose the Daubechies'
wavelet as a trial function in single channel,
then its shifted interpolating property makes it
possible to sample data per unit node without
the -additional integralm or material operatorm
in inhomogeneous or anisotropic media. Further-
more, the complete equations with the con-
ductivity term are straightforward and similar to
FDTD formulae, The multi-channel scheme or
multiresolution approach will be introduced in
Appendix.

Let us derive the WG scheme of Maxwell's
curl equations using Daubechies’ compactly su-
pported wavelets'”,

Maxwell's curl equations in the time domain
dH _

—ﬂ—a—t——kvxf, (7

oE + e—%—tfEi =vxH (8)
may be approximated with wvarious scaling
functions. For examples, in the case of MRTD
scheme, the field components are represented by
a series of Haar scaling functions in time and
cubic spline Battle-Lemarie bases in space,
while in FDTD a series of Haar scaling
functions is expanded in both time and space
domain. For the generality of WG scheme, we
define h(t) as the Haar scaling function for

time domain expansion and ¢(x) as the ortho
normal scaling function for space, respectively.

The six components of electromagnetic field
are expanded in terms of the tensor product of
scaling functions

0

H(r, = L2 H k2 i(x)

“@i12(9) @rr12(2) By(2), (9)

<9

H(r. D=

ey
e ARk 12 Pivip

< (x) 93 Prr12(2) hu(2), (10)

oC

0z
s Hilipiaipan @icip

(1) @100 e(2) B(8), (11)

<)

Px
s El ka2 v

(%) 0;(3) @i(2) hyoypp(t), (12)

Elipannei(x)

c @i 1208 (@) By (), (13)

 El a1 9i(x)

* 9i(3) @rr12(2) By 1o (1) (14)

where Ef7, ,and Hf,, with x==x,v, 2 are

expansion coefficients in terms of scaling
functions. Integers ¢,7,# and #» indicate the
discrete lattice indices in space and time grids
related to the space and time coordinates via
x=1idx, y=jdy, z=kdz and t= ndt, where
dx, 4y, dz and 4t represent the space dis
cretization interval in x-, y-, z-direction and the
time discretization interval, respectively.

The indices follow the traditional Yee's leap-
frog scheme™’ This provides a conditional stability
for hyperbolic partial differential equation and
the stability condition is typically of a form
similar to the Courant stability condition for the
general leap-frog method.

The 4,(# and ¢;(x) functions are generated
from the basic scaling functions by scaling and

translation:
By = (L —n+ 1) (15)
" At 27
P = (- — 9. (16)

553



BETHERERE F10R F43 199F 88
The Haar scaling function A(#) is defined as

1 if 0<t<1
WH= (17
0 otherwise .

The scaling functions are generally created

from the product formula

2:(5)=]I°='1;H(2"’5) (18)

where H(&)= ; hye ™ and P is the Fourier

transform of ¢ defined as
p(&= [ o) e ar. (19)

Daubechies’ scaling function ¢(x) with two
vanishing wavelet moments (DB2) and its
coefficients %, are shown in Fig. 1 and Table I,

respectively. The number of vanishing wavelet
moments is denoted by p and given by

+ oo
[ 20 ax=0 for 0<k<p—1,
keZ. (20)

The property of wavelets with vanishing
moments are important in approximation of
smooth functions and operators,

The field expansions (9) to (14) are inserted
in Maxwell's equations (7) and (8), and
sampled using basis functions as test functions
according to Galerkin method. For the sampling
with respect to time in terms of Haar scaling
function, the related inner products become

<hn(t), hn’(l‘)>:6n’n'dt, (21)
oh, (¢t
<hn*1/2(t)’ a—t()>:6n,n'_6n,n'+1 (22)
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where the inner product of two functions f, g

is defined as
RD, g>=[ A0 (23)
and &, , is the kronecker delta given by

1 for n=n'
6n.n’: (24)
0 for n+#n'.

In sampling with respect to an orthogonal

lattice, the related integrals are obtained as
< go,-(x), (05'(JC)>: 5,-',-'Ax, (25)
i), ‘aé{ix‘%'ﬂ/z(x)) = 27’(1) Oivtire

(26)
The coefficients #(/) are calculated by these
correspondents in time and frequency domain:

P = et DL oe—1) ax

+oo- N —‘(l+-1-)'
= [ EIRore T

27)

p(x) WL/

Fig. 1. Daubechies’ scaling function with two vanishing
wavelet moments,
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Table 1. The coefficients #,.

k hy

0 0.34150635094622
1 0.59150635094587
2 0.15849364905378
3 -0.09150635094587

Table 2. The coefficients »(/).

! (1)

0 1.22916661202745
1 -0.09374997764764
2 0.01041666418309

For DB2, the coefficients »(!) for 0<1<2
are shown in Table II and for /> 2 are zeros
due to the compact support of Daubechies’
scaling function. The coefficients »(/) for
[<{(Q are given by the symmetry relation
r(=1=0= —r().

In Daubechies” scaling functions, the shifted

interpolation property is almost ‘satisfied. This

property is given by the following lemma'®:

Lemma 1 If o(r+ k) =6, with k€Z
and p=1, then =M,

where M, is the first order moment of the

scaling function given by
+ o0
M= [ xe(xd (28)

and p is the number of vanishing wavelet

moments.

Proof. Refer to [6].

To make use of the shifted interpolation pro-
perty, (16) is modified to

o= o(F-— it M). (29)

For DB2, M,=06343975. In spite of its
support [0, 3], single point sampling of total
field can be taken at integer points with
negligible error, For example, E, component at
spatial point ((i+1/2)dx, jdy, k4z) and at
time (n—1/2)d¢ becomes

E,((i+1/2)dx, idy, kdz,(n—1/2)4t)

([ fEGaxs -t

LY 2 _ t _ntl
5¢( Iy 7) 8¢ e k) 6( yr 5 )

cdedydzdt = E¥l 1 bn-112 (30)

where & Is the Dirac delta function. It is noted
that the sampled values are very dependent on
the test function.

Using (21), (22). (25), (26) and (29), we
obtain the scalar equations related to H, and

E, corresponding to Maxwell's curl equations

(10), (11):

Hii+1/2,k+1/2 Px ox
YT, (Hf 5 emen— HE v 10 6e 12, 0-1)

_ Zr(l)( 11+1/2 k+l+1n 1/2

Ei¢g+ + n—
_ kG 1.2;1/2. 1/2), (31)

z+1/2 ik
S (B imnviet Ef 20 n-1/2)

Eiv1/2..k 123
+ ———_(EH Vedentr2 ™ ES 250012

_Z 7(1)( ., ;+1+1/2 kon
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B Hz'ﬁryl/Z.vak; 1+1/2,n ) (32)

where g;;,, 0;;, and e;; represent perme-
ability, conductivity and permittivity at spatial
point (idx, jdy, k4z), respectively, and these

quantities are measured by the formula

f;‘,;’_k: ffff(x,y,z)&(z%—

<
© 0(Z=— B drdydz. (33)

i)a(z,V;—j)

Other equations of electromagnetic field are

obtained straightforwardly by the similar way.,

. Stability Criteria

The stability condition of the WG scheme is
derived by the similar way to those of FDTD™V
and MRTD with the scaling functions only
(S-MRTD)"™. For the WG scheme with DB2
(WG-DB2). the stability condition becomes

cdt <

1
. 1 1 1
gb"“)'\/ 40 T @y’ T (12?
1

7 — . (34)

4 1
3\/ 297 T ayt T (42)*

Especially, for the scale dx=Jdy=Jdz= A4, the

stability condition becomes

cdt < (0.4330134. (35)

IV. Dispersion Analyses

In order to analyze the numerical dispersion of
the WG-DB2 scheme, plane monochromatic
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traveling-wave modes are substituted into the
discretized Maxwell's equations. For simplicity,
the compact vector notation for Maxwell's
equations is used for derivation[m.

For a normalized region of space with no loss,

#=1, =1, we obtain

[ sin(42)]
::ﬁ zor(ll)sin{(h+%)ﬁdx}:
L5 & rwsin{ 6+ )

[_1 : 1\ 5 4]
+. = 32{)7*(13)sm[(13+ 5 )kzdz}- .
(36)
To quantitatively assess the numerical dis-

persion characteristics of the WG scheme, we
assume grids with equidistance in spatial do

n (dx=4dy=4z=4) and wave propagation
at angles @ and B. a denotes the angle bet
ween x-axis and the propagation in the z=0
plane while A represents the angle between z-
axis and propagation. Then numerical dispersion
relation of (36) simplifies to

(<) sn(4)
= Z r(hysin{(4+
+ Z‘f r(b)sin{(f+

(544 keoss- )]

+ 32 7(l5)sin (
(37)

(37) can be solved for the numerical wave

)kcosa sinf - A}]Z

[\’)[»—-

N[r—t

)Esinasinﬁ- A}r

L\’>|r-a

vector % at any wave propagation angle «
and A by applying the iterative procedure of
Newton’'s method:
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.
kio= Kk ) (38)

The normalization of 4 to the free-space
wavelength A, is equivalent to normalizing the
free-space wavelength to one unit. Then an
initial guess for %, may be simply 2. the
wavenumber of the corresponding mode in free
space. For this case, it is shown that the

numerical phase velocity v, is given by

B 2 (39)
C

where % g, is the final result of the Newton's
method iterations.

The calculated dispersion characteristics of
the WG-DBZ scheme are shown in Fig. 2.
While the numerical phase velocity of FDTD
method is always slower than that of ideal case,
the phase velocity in the WG-DB2 scheme
fluctuates between faster and slower areas. In
the FDTD method, the basis function in spatial

Fig. 2. Varation of the numerical phase velocity with
wave propagation angles @ and B in three
dimensional WG-DB2 scheme ( 4 =04 A; in

spatial domain, 4¢=0.14 in time domain).

domain has poor regularity because the number
of its vanishing wavelet moment is one.
Actually, 10 or more grids in the smallest
wavelength is recommended in the FDTD
discretization. DB2 has more regularity according
to its two vanishing wavelet moments.

In the wavelets of Daubechies’ family and
other wavelet system, the more regularity can
be obtained by increasing_ the number of filter
coefficients or the degrees of freedom. The
increase in the number of filter coefficients,
however, leads to the heavy calculational burden,
This is related to the support width of the basis
function in Daubechies’ family which has com-
pact support. In case of wavelet with the
infinite support such -as Battle-Lemarie cubic
spline wavelet, the truncated support width has
relations with computational complexity. One
can take tradeoff between the regularity and
the support width.

Fig. 3 shows the dispersion characteristics of

o WG-DB2
3 FDTD
= S-MRTD /PL(
w ,«V"/—/—
e
412/ //0
. ' g
ayt 7 e
max ‘1— p < s rd///
oL P
F S /
/ oo/
/ \ /
Y
\ /
4/

Fig. 3. Numerical dispersion characteristics of WG-
DBz, FDTD, S-MRTD schemes according to
various spatial discrete sizes (The time dis-
cretization is fixed as 4¢t=0.14. Markers
represent calculated points, The lines between
markers are linearly interpolated.)
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three different schemes with various spatial
discrete sizes. The time discretization is fixed as
At=0.14, As described above, 4/A, smaller

than 0.1 is recommended in FDTD. Discretization
with 4/4, > 0.1 leads to non-negligible error

and the numerical cutoff grid level exists
between 0.3 and 04. In WG-DB2 and S-MRTD,
however, coarse grid level retains small error

even at near Nyquist limit.

V. Numerical Results

To validate the current approach, numerical
results for homogeneous and inhomogeneous
rectangular cavities have been tested. The
geometries of the tested cavities are shown in
Fig. 4. In order to use a pulse excitation at
(ig dx, jody, kydz,modf) with respect to
space and time, the pulse in WG-DBZ is
decomposed as

(23 _ px pulse
Efin = Efeat ELG b

i1, 05,5, Ot ky O, my (40)

The frequency response can be obtained by
the fast Fourier transform (FFT) at the specific
points.

The compact support width longer than 1
leads to the additional embedding of tangential
field components for modeling the boundary
condition on the perfect electric conductor
(PEC) or perfect magnetic conductor (PMC).
According to the image principle, perfect electric
or magnetic walls are modeled utilizing the
symmetry conditions for the tangential fields. In
particular, the electric and magnetic field

components tangential to the PEC must have

558

y j: 4A xA/)\
I .z ¢ '<——20Af->1\\’/
X

(d)

Fig. 4. Three dimensional homogeneous and inhomo-
geneous cavities.

odd and even symmetry, respectively. In the
similar way, the perfect magnetic wall may be
modeled by implanting even tangential electric
fields and odd tangential magnetic fields with
respect to the PMC.
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The results are obtained with two different
mesh sizes for WG-DB2 scheme and compared
with the responses of FDTD with the fine mesh.
All the numerical experiments are implemented
with the same time discretization, 4t=10"°4
and each procedure is iterative in 50,000 time
step in order to obtain the steady-state solution.
The results of WG-DB2 scheme show the good
agreement with the analytic value and those of
FDTD.

Table 3 summarizes the numerical results in
terms of the normalized lowest resonant
frequency, mesh size and execution time".
Compared with the conventional FDTD method,
WG-DB2 scheme with coarse grid provided a
32:1 reduction in the required mesh size and a
13.4:1 reduction in the execution time for the
air-filled cavity. In the inhomogeneous cavities,
the reduction of the mesh size is limited to the

geometries of the scattering objects. If the

scatterer has a complex shape, the fine mesh
must be used to eliminate the ambiguity in
construction of geometry and the error related
to the abrupt change of the material parameters
such as permittivity, permeability and conduc-
tivity.

Especially in the dimension with the invariant
or smoothly variant parameters, the coarse grid
is still available. Table 3 supports this effect in
the reduced computational burden.

About 1.7 times increase in computation time
is observed in WG-DB2 scheme with the same
grid discretization of FDTD method. However,
WG-DB2 scheme provides more precise solution
for the wide frequency range because of its
relatively linear numerical dispersion even at
near Nyquist sampling limit as shown in Fig. 2
and 3.

Table 3. Normalized lowest resonant frequencies for the cavities shown in Fig, 4

Finite difference time domain Wavelet-Galerkin with DB2
.. Normalized Normalized Analytic
Cavities Executi i
resonant Mesh size 'xecu on resonant Mesh size Executlon value
time(sec) time(sec)
frequency frequency
Cavit 007513 1268 101.2
2 L oors | 1axexs 549 0.07512
Fig. 4 (a) 0.07593 3x3x2 41
; 0.05273 12X6x8 102.8
Cavity I 1) oo 12%6 %3 504 -
Fig. 4 (b) 0.05313 12x3x2 125
i 0.02660 20X6x8 175.8
Cavity 1) oag 20X6X8 1046 -
Fig. 4 (c) 0.02633 X3 X2 8.9
; 003813 20Xx6x8 1759
Cavity IV} 0753 20x6x8 1048 -
Fig. 4 (d) 0.03793 EX3IXB 34.2

" The source program was written in C and executed using the IBM compatible PC with Pentium CPU. The execution time was
measured in preprocessing and main procedures. The processes of FFT and visualization were not included in the execution time,
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VI. Conclusion

The WG-DBZ scheme with shifted inter-
polation property has been derived. The simple
Interpolating approach allows the simplified form
of equations for inhomogeneous media without
the integral or material operator., The dispersion
characteristics of the WG-DB2 scheme are
analyzed and compared with those of other
methods, FDTD and S-MRTD. 1t is shown that
WG-DB2 provides the nearly linear numerical
dispersion even around Nyquist limit.

The derived algorithm is tested in the nu-
merical analyses of the homogeneous and in-
homogeneous cavities, The results of the WG-
DB? scheme show the good agreement with the
FDTD correspondents, For the homogeneous
cavity the economy of computational storage
and execution time in the WG-DB2 scheme
with coarse grid is 32 times and 134 times
greater than in the FDTD method, respectively,
while its algorithm also retains the good
accuracy of a numerical approximation. For the
Inhomogeneous media, the reduction of the
mesh size is limited by its geometric complexity.
The coarse grid is still available in the di-
mension with the smoothly variant parameters.

The derived scheme shows the excellent
trade-off between the regularity and the support
width of the basis function. Although the DB2
has only two vanishing wavelet moments, it
provides small dispersive error in the numerical
analyses and its narrow support enables several
involved terms per node. Moreover, the shifted
interpolation property of the Daubechies’ wavelet
family eliminates the additional matrix for the

560

integral or material operator. It leads to the
further reduction in the storage burden and the
execution time.

Appendix

Extension to multiresolution scheme

For time and space adaptive gridding, wave-
lets as well as scaling functions are scaled and
translated. In two-channel scheme in z-axis, the

basis function of H, is extended as

o2

H(7, 0 =

z‘,;‘,k,,,=,m(Hf§+1/2,k+1/2,n
¢k+1m(2)%-11f§+uzk+uzn Gpe12(2)

: ¢j+1/2(J’) edx) h,(D. (41)

The wavelet function ¢{x) is given by
blD= WS —it M) (42

where M; is the first order moment of the
scaling function given by (28). The shift factor
M, is also utilized for the multi-channel
approach in Daubechies’ wavelet family, The
shifted interpolation property makes it possible
to obtain single sampling per nodes in the region
with the negligible wavelet coefficients.

In sampling with respect to an orthogonal
lattice and orthonormal bases, the related
integrals are obtained as (25), (26),

<¢Jl'(X), ¢l"(x)>:6,'_,"dx, (43)
Cpi(x), ¢ (2)>=<¢(0), ¢, ()>=0, (44)
W0, L) = TalD) b,

(45)
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G, Lo 0> = DD,
(46)

o0, i rnl)> = LW 8oy

47)
By embedding wavelets, the calculation of the

integrals (52) to (54) are required as following:

o= [t D) =) de, (4B)
B = [ Toe+ DL p(x—trdx, (49)

r(n=[ e+ DL ex—$rax. (0

Using (21), (22), (25), (26), (29), (42) to
(47) we obtain the scalar equations related to

H, corresponding to Maxwell's curl equation
(7):

1
i (B 1aryzn— B ez -1

_ Z 7(1)( NeAaYy k+l+l n=1/2

. Eifoja I+1,k+1/2,n—1/2 )
dy

_'_ZF(I) Z,H'l/z Z;+1 n—1/2 , (51)

1 ¢ ¢
i (B eerzn— Bije12, b+ 1/2.2-1)

_Za(l) zl+1/2 k+l+1n 1/2

+ZB(1) z;+1/2 Z;H n—1/2

_Zr(l) Z)*“—] k+1/2ﬂ 1/2 . (52)

Other equations of electromagnetic field are
obtained straightforwardly by the similar way.

In the inhomogeneous media, constitutive

equations such as B= /171), D=eE have to
be used to obtain electromagnetic field
intensities from these flux density functions.
This leads to the integral equations or material
operators and burdens the additional complexity
and storage for the related matrices. In order to
reduce the computational burden, space- and
time-adaptive grids must be embedded by

means of the thresholding procedure.
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