Relative Absorption Edges of GaN/InGaN/GaN Single Quantum Wells and InGaN/GaN Heterostructures by Metalorganic Chemical Vapor Deposition

유기금속화학기상증착법으로 성장된 GaN/InGaN/GaN 단양자 우물층과 InGaN/GaN 이종접합 구조의 광학적 특징

  • Kim, Je-Won (Dept.of Materials Science, Korea University) ;
  • Son, Chang-Sik (Dept.of Materials Science, Korea University) ;
  • Jang, Yeong-Geun (Dept.of Materials Science, Korea University) ;
  • Choe, In-Hun (Dept.of Materials Science, Korea University) ;
  • Park, Yeong-Gyun (Korea Institute of Science and Technology, Semiconductor Device laboratory) ;
  • Kim, Yong-Tae (Korea Institute of Science and Technology, Semiconductor Device laboratory) ;
  • Ambacher, O. (Walter Schottky Institute, Technische Universitat Munchen) ;
  • Ctutzmann, M. (Walter Schottky Institute, Technische Universitat Munchen)
  • 김제원 (고려대학교 재료공학과) ;
  • 손창식 (고려대학교 재료공학과) ;
  • 장영근 (고려대학교 재료공학과) ;
  • 최인훈 (고려대학교 재료공학과) ;
  • 박영균 (한국과학기술연구원 반도체연구실) ;
  • 김용태 (한국과학기술연구원 반도체연구실) ;
  • ;
  • Published : 1999.01.01

Abstract

The room temperature optical transmission spectra of GaN /InGaN/GaN single quantum wells (SQW) and InGaN/GaN heterostructures grwon by low pressure metalorganic chemical vapor deposition have been measured. The dependence of the absorption edges of the GaN/InGaN/GaN SQW on the well width has been determined from the transmission spectra. The result shows that the absorption edge of GaN/InGaN/GaN SQW shifts towards lower energy as increasing the well width. The dependence of the absorption edges of the InGaN/GaN heterostructures on InN mole fraction has also been determined from the transmission spectra. The result is compared with calculated values obtained from Vegards's laws. Our result shows a good agreement with the calculated values.

Keywords

References

  1. The Blue Laser Diode S.Nakamura;G.Fasol
  2. Jpn. J. Appl. Phys. v.34 S.Nakamura;M.Senoh;N.Iwasa;S.Nagahama
  3. Appl. Phys. Lett. v.69 S.Nakamura;M.Senoh;S.Nagahama;N.Iwasa;T.Yamada;T.Matsushita;Y.Sugimoto;H.Kiyoku
  4. Appl. Phys. Lett. v.71 N.Grandjean;J.Massies
  5. Appl. Phys. Lett. v.69 N.Grandjean;J.Massies;M.Leroux
  6. Mat. Res. Soc. Symp. Proc. v.395 T.D.Moustakas
  7. J. Appl. Phys. v.82 D.Brunner;H.Angerer;E.Bustarret;F.Freudenberg;R.Holer;R.Dimitrov;O.Ambacher;M.Stutzmann
  8. Phys. Rev. B v.20 E.C.Freeman;W.Paul
  9. Appl. Phys. Lett. v.70 R.Singh;D.Doppalapudi;T.D.Moustakas;L.T.Romano
  10. O.Ambacher;D.Brunner;R.Dimitrov;M.Stutzmann;A.Sohmer;F.Scholz
  11. Z. Phys. v.5 L.Vegard
  12. Solid State Commun. v.11 K.Osamura;K.Nakajima;Y.Murakami;P.H.Shingu;A.Ohtsuki