마이크로다공성재료의 합성과 촉매적성능 (CHA, ERI, and MTT types)

Synthesis and Their Catalytic Performance on Microporous Materials(CHA, ERI and MTT types)

  • 강미숙 (일본 경도대학교 물질에너지학과) ;
  • 박종열 (부산대학교 화학과) ;
  • 엄명헌 (국립천안공업대학 공업화학과)
  • Kang, Mi-Sook (Dept. of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University) ;
  • Park, Jong-Yul (Dept. of Chemistry, Pusan National University.) ;
  • Um, Myeong-Heon (Dept. of Industrial Chemistry, Cheonan National Technical College)
  • 발행 : 1999.02.01

초록

삼차원적 골격구조를 가지며 세공의 크기와 산성도가 유사한 SAPO-44, SAPO-34(CHA type), SAPO-17(ERI type), 그리고 1차원적 고격구조를 가진 ZSM-23(MTT type) 촉매재료를 합성하고, 메탄올 전환방응에 있어서의 촉매적 성능을 비교 검토하였다. 이들의 산성도 세기는 SAPO-44>SAPO-34>SAPO-17>ZSM-23 순으로 나타났다. 메탄올 전환반응을 비교한 결과, 삼차원적 골격구조를 가지고 있는 SAPO-34와 SAPO-44에서 높은 에티렌 선택성이 얻어졌으며, 특히 Ni을 골격내에 도입시켰을 때 그 선택율은 더욱 증가하였다. 반면에 1차원적 골격구조를 가지고 있는 ZSM-23에서는 입체적 형상선택성의 감소로 올레핀보다는 파라핀의 선택율이 우세하였다.

This work was focused on the synthesis and their catalytic performance on microporous materials having various pore types and dimensions in structures, such as the SAPO-34 and the SAPO-44 with CHA type, the SAPO-17 with ERI type of three dimensional structures, and the ZSM-23 with MTT type of one dimensional structure. Synthesized materials exhibited various acidities and the selectivities to olefin in methanol conversion. As a result, the order of their acid strength was as follows; SAPO-44>SAPO-34>SAPO-17>ZSM-5. On the other hand, the CHA type materials, such as SAPO-34 and SAPO-44, had high selectivity to light olefins(ethylene or propylene), and ZSM-23 with MTT typ of one dimensional structure showed high selectivity to paraffins over $\textrm{C}_{5}$~. This result is a proof that the structure in material had strong influence on catalytic performance. In addition, a surprising result is that the catalytic selectivity to ethylene enhanced on Ni-corporated materials compared with the non-corporated.

키워드

참고문헌

  1. Zeolite Molecular Sieves, Structure, Chemistry and use D.W.Breck
  2. Molecular Sieves, Principle of synthe-sis and identification R.Szostak
  3. Zeolite Catalysis, Principle and applications S.Bhatia
  4. Stud. Surf. Sci. Catal. v.58 E.M.Flanigen
  5. U.S. Pat.4440871 B.M.Lok;C.A.Messina;R.L.Patton;R.T.Gajek;T.R.Cannan;E.M.Flanigen
  6. J. Am. Chem. Soc. v.104 S.T.Wilson;B.M.Lok;C.A.Messina;T.R.Cannon;E.M.Flanigen
  7. Proc. 6th. Intern. Zeol. Conf., Reno,1983 S.T.Wilson;B.M.Lok;C.A.Messina;E.M.Flanigen
  8. J. Am. Chem. Soc. v.106 B.M.Lok.;C.A.Messina;R.L.Patten;R.T.Gajek;T.R.Cannan;E.M.Flanigen
  9. Stud. Surf. Sci. Catal. v.28 E.M.Flanigen;B.M.Lok;R.L.Patton;S.T.Wilson
  10. Stud. Surf. Sci. Catal. v.58 S.T.Wilson
  11. Chem. Mater. v.3 J.M.Thomas;Y.Xu;C.R.A.Catkow;J.W.Coaves
  12. J. Chem. Soc., Chem. Commun. T.Inui;S.Phatanasri;H.Matsuda
  13. Appl. Catal., A:Genetal v.164 T,Inui;M.Kang
  14. ACS Symp. Series v.398 T.Inui
  15. Catal. Rev.-Sci. Eng. v.25 C.D.Chang