Fabrication and Electric Properties of $\textrm{LiNbO}_3$ Thin Film by an Rf-magnetron Sputtering Technique Li-Nb-K-O Ceramic Target

Rf-magnetron sputtering 방법으로 Li-Nb-K-O 세라믹 타겟을 사용하여 제작한 $\textrm{LiNbO}_3$박막의 제작 및 전기적 특성

  • Park, Seong-Geun (Dept.of Electronics Engineering, Kyungpook National University) ;
  • Baek, Min-Su (Dept.of Electronics Engineering, Kyungpook National University) ;
  • Bae, Seung-Chun (Dept.of Electronics Engineering, Kyungpook National University) ;
  • Gwon, Seong-Yeol (Dept.of Sensor Engineering, Kyungpook National University) ;
  • Kim, Gwang-Tae (Dept. of Materials Science Eng., Kyung-pook National University) ;
  • Kim, Gi-Wan (Dept.of Electronics Engineering, Kyungpook National University)
  • 박성근 (경북대학교 전자공학과) ;
  • 백민수 (경북대학교 전자공학과) ;
  • 배승춘 (경북대학교 전자공학과) ;
  • 권성열 (경북대학교 센서공학과) ;
  • 김광태 (경북대학교 재료공학과) ;
  • 김기완 (경북대학교 전자공학과)
  • Published : 1999.02.01

Abstract

LiNbO$_3$films were prepared by an rf-magnetron sputtering technique using sintered target containing potassium. The potassium was included to help to fabricate stoichiometric LiNbO$_3$film. Structural and electrical properties of thin films was investigated as a function of deposition condition. Optimum sputtering conditions were rf power of 100W, working pressure of 1m Torr and substrate temperature of 58$0^{\circ}C$. The thin film was grown to (012) preferred orientation. The dielectric constant of the thin film LiNbo$_3$ fabricated under optimum condition was 55 at 1MHz. Average grain size is about 200$\AA$ and roughness of the film is small enough to apply to optic devices.

Keywords

References

  1. J. Cryst. Growth v.177 K.Kaigawa;T.Kawaguchi;M.Imaeda;H.Sakai;T.Fukuda
  2. Solid State Commun. v.97 no.6 W.S.Hu;Z.G.Liu;D.Feng
  3. Jpn. J. Appl. Phys. v.35 no.1 Dong-Hoon Won;Nam-Hwi Her;Kwang-Soo No
  4. J. Cryst. Growth v.166 R.S.Feigelson
  5. Appl. Phys. Lett. v.68 no.19 S.Tan;T.E.Schlesinger;M.Migliuolo
  6. J. Appl. Phys. v.72 no.9 T.A.Rost;H.Lin;T.A.Rabson;R.C.Bauman;D.L.Callahan
  7. J. Appl. Phys. v.72 no.3 S.Schwyn;H.W.Lehmann;R.Widmer
  8. J. Appl. Phys. v.68 no.6 R.C.Bauman;T.A.Rost;T.A.Rabson
  9. Optics Letters v.18 no.10 C.H.J.Huang;T.A.Rabson
  10. Appl. Phys. Lett. v.66 no.3 Y.Kong;J.Wen;H.Wang
  11. Appl. Phys. Lett. v.61 no.18 J.Kushibiki;T.Kobayashi;H.Ishiji;N.Chubachi
  12. Appl. Phys. Lett. v.61 no.18 J.K.Yamamoto;K.Kitamura;N.Iyi;S.Kimura;Y.Furukawa;M.Sato
  13. Chem. Mater. v.9 M.Paul;M.Tabuchi;A.R.West
  14. Phys. Stat. Sol.(a) v.147 J.A.C.Depaiva;E.B.De Araujo;A.C.Hernandes;A.S.B.Sombra
  15. J. Phys. Chem. Solids v.56 no.9 G.Malovichko;O.Cerclier;J.Estinne V.Gracheve;E.Kokanyan;C.Boulesteik
  16. Appl. Phys. v.A56 G.Malovichko;V.Grachev;E.Kokanyan O.Schirmer;K.Betzler;B.Gather;F.Jermann;S.Klauer;U.Schlarb;M.W.ohleke
  17. Appl. Phys. v.A37 R.S.Wets;T.K.Gayload
  18. Phys. Stat. Sol.(a) v.154 X.L.Guo;Z.G.Liu;J.M.Liu;S.N.Zhu;Y.Y.Zhu