Thermal Recovery Behaviors of Neutron Irradiated Mn-Mo-Ni Low Alloy Steel

중성자에 조사된 Mn-Mo-Ni 저합금강의 열처리 회복거동

  • Jang, Gi-Ok (Korea Atomic Energy Research Institute, Dept. of Materials Engineering, Chungnam National University) ;
  • Ji, Se-Hwan (Korea Atomic Energy Research Institute) ;
  • Sim, Cheol-Mu (Korea Atomic Energy Research Institute) ;
  • Park, Seung-Sik (Korea Atomic Energy Research Institute) ;
  • Kim, Jong-O (Dept. of Materials Engineering, Chungnam National University)
  • Published : 1999.03.01

Abstract

The recovery activation energy, the order of reaction and the recovery rate constant were detemined by isochronal and isothermal annealing treatment to investigate the recovery behaviors of neutron irradiated Mn-Mo-Ni low alloy steels$(fluence: 2.3\times10^{19}ncm^{-2}, 553K, E\geq1.0 MeV)$. Vickers microhardness tests were conducted to trace the recovery behavior after heat treatments. The results were analyzed in terms of recovery stages, behavior of responsible defects and recovery kinetics. It was shown that recovery occurred through two annealing stages(stage I : 703-753K, stage n : 813-873K) with re$\infty$very activation energies of 2.5 eV and 2.93 eV for each stage I and n, respectively. From the comparison of unirradiated and irradiated isochronal anneal curves, a radiation anneal hardening(RAH) peak was identified at around 813K. Most of recovery have occurred during about 120 min irrespective of isothermal annealing temperatures of 743K and 833K. Recovery rate constants were determined to be $3.4\times10^{-4}min^{-1} and 7.1\times10^{-4}min^{-1}$ for stage I and II, respectively. The order of reaction was about 2 for both recovery stages. Comparing the obtained data with those of previously reported results on neutron irradiated Mn- Mo- Ni steels, the thermal recovery be­havior of the present material seems to occur by the dissociation of point defect clusters formed during irradiation, and by the recombination process of self-interstitials and vacancies from dissociated vacancy clusters.

중성자에 조사 $(fluence: 2.3\times10^{19}ncm^{-2}, 553 K, E\geq1.0 MeV)$된 Mn-Mo-Ni 저 합금강 모재의 열처리 회복 거동을 조사하기 위하여 등시소둔과 등온소둔을 수행하여 회복 활성화에너지, 회복 반응차수 그리고 회복 반응률상수를 결정하였다. 열처리 후 회복은 비커스 미세 고온경도기로 측정하였고 실험결과를 이용, 열처리 회복단계, 회복결함들의 거동 및 회복 kinetics을 분석하였다. 실험결과 2단계의 회복구간(stage I : 703-753K, stage II : 813K-873K)이 나타났으며 각 단계의 회복활성화 에너지는 2.50 eV(1단계) 및 2.93 eV(2단계)이었다. 조사재와 비조사재의 등시소둔 곡선의 비교를 통하여 813K에서 RAH(radiation anneal hardening) 피크를 확인할 수 있었다. 743K 및 833K에서 수행한 등온소둔 결과, 회복의 60%가 모두 120분 이내에 일어나는 것으로 관찰되었다. 회복 반응차수는 두 회복구간에서 모두 2로 나타났으며 회복 반응율상수는 $3.4\times10^{-4}min^{-1}$(1단계)과 $7.1\times10^{-4}min^{-1}$(2단계) 이었다. 이상의 결과와 기 발표된 자료들을 함께 분석한 결과, 본 재료의 회복은 오랜 중성자조사로 형성된 점결함 집합체들이 열처리에 의한 분해와 Fe 기지에 격자간 원자로 존재하던 self-interstitial들과 vacancy들의 재결합에 의해 일어나는 것으로 해석된다.

Keywords

References

  1. Code of Federal Regulations, 10 CFR 50, App. G v.60 no.243
  2. Code of Federal Regulations, 10 CFR 50, App. H v.60 no.243
  3. v.61 V.N.Shah;P.E.Macdonald
  4. ASTM E-509 v.12
  5. EPRI NP-2712 v.1;2 T.R.Mager
  6. A.C.Damask(et al.)
  7. Phys. Rev. v.103 C.J.Meechan;J.A.Brinkman
  8. Nucl. Tech. v.59 D.Pachur
  9. ASTM-STP 782 D.J.Harvey;M.S.Wechsler
  10. ASTM-STP 1125 E.Mader;G.E.Lucas;G.R.Odette
  11. ASTM E-384-84 Standard test method for microhardness of material
  12. Physical Review v.100 no.6 W.Primak
  13. Nuclear Energy v.33 no.3 E.A.Little;G.Gage
  14. Nuclear Energy v.33 no.3 G.Gage;E.A.Little
  15. ASTM STP 1011 An international review 3rd volume P.A.Beaven(et al.)
  16. 16th International symosium, ASTM STP 1175 R.E.Stoller
  17. 17th International Symposium, ASTM STP 1270 R.G.Lott(et al.)
  18. Journal of Nuclear Materials v.249 P.Pareige(et al.)
  19. J. Nucl. Mater. v.225 P Auger(et al.)
  20. Precipitation from ironbase alloys v.69 R.F.Deker;S.Floreen
  21. Diffusion in BCC metals v.357 R.A.Johnson
  22. ASTM STP-725 v.38 J.F.Mancuso(et al.)
  23. Acta Metalluigica v.12 R.A.Arondt;A.C.Damask
  24. Phase Transformations on Metals and Alloys v.427 D.A.Porter;K.E.Easterling
  25. Metallurgical Transactions A v.15A D.Y.Lee(et al.)
  26. ASTM STP 782 J.R.Hawthorne
  27. Fundamental aspects of nuclear reactor fuel elements v.405 Donald R. Olander
  28. Second International Conference on Strength of Metal and Alloys v.2,742 S.M.Ohr(et al.)