$\textrm{Cl}_{2}/\textrm{H}_{2}$ 플라즈마 조건이 n-GaN 식각 특성 및 저저항 접촉 형성에 미치는 영향

Effects of Cl$_2$/H$_2$Plasma Condition on the etch Properties of n-GaN and ohmic Contact Formation

  • 김현수 (성균관대학교 재료공학과) ;
  • 이용혁 (성균관대학교 재료공학과) ;
  • 이재원 (삼성종합기술원 광반도체연구실) ;
  • 김태일 (삼성종합기술원 광반도체연구실) ;
  • 염근영 (성균관대학교 재료공학과)
  • 발행 : 1999.05.01

초록

In this study, n-GaN samples were etched using planar inductively coupled $Cl_2$/$H_2$plasmas and the effects of plasma conditions on the etch properties, surface composition, and ohmic contact formation were investigated as a function of gas combination. As the addition of hydrogen to the $Cl_2$plasma increased to 100%, GaN etch rates decreased due to the reduction of chlorine radical density. Even though the variation of the surface composition is limited under $50\AA$, the surface composition was also changed from Ga-rich to N-rich with the increased addition of hydrogen to $Cl_2$. Etch products by the reaction between Ga in GaN and Cl in $Cl_2$ plasma were investigated using OES analysis during the GaN etching. The value of specific resistivity of the contact formed on the n-GaN etched using 100% $Cl_2$plasma was 3.1$\times$10\ulcorner$\Omega$$\textrm{cm}^2$, and which was lower than that formed on the non-etched n-GaN. However, the resistively was increased with the increased hydrogen percent in $Cl_2$/$H_2$.

키워드

참고문헌

  1. MRS BULLETIN/FEBRUARY J.C.Zolper;R.J.Shul
  2. Appl. Phys. Lett. v.66 R.J.Shul;S.P.Kilcoyne;M.H.Crawford;J.E.Parmeter;C.B.Vartuli;C.R.Abernathy;S.J.Pearton
  3. J. Vac. Sci. Technol. v.A15 C.B.Vartuli;S.J.Pearton;J.W.Lee;J.D.Mackenzie;C.R.Abernathy;R.J.Shul
  4. Mat. Sci. Eng. v.B31 S.J.Pearton;C.B.Vartuli;R.J.Shul;J.C.Zolper
  5. J. Electron. Mat. v.27 H.Cho;J.Hong;T.Maeda;S.M.Donavan;C.R.Abernathy;S.J.Pearton;R.J.Shul;J.Han
  6. Appl. Phys. Lett. v.71 S.A.Smith;C.A.Wolden;M.D.Bremser;A.D.Hanser;R.F.Davis;W.V.Lampert
  7. J. Vac. Sci. Technol. v.A16 R.J.Shul;C.G.Wilison;M.M.Bridges.J.Han;J.W.Lee;S.J.Pearton;C.R.Aberathy;J.D.Mackenzie;L.Zhang;L.F.Lester
  8. Mat. Res. Soc. Symp. Proc. v.468 H.S.Kim;Y.J.Lee;Y.H.Lee;J.W.Lee;M.C.You;T.I.Kim;G.Y.Yeom
  9. Appl. Phys. Lett. v.67 A.T.Ping;I.Adesida;M.Asif Khan
  10. Appl. Phys. Lett. v.65 I.Adesida;A.T.Ping;C.Youtsey;T.Sow;M.A.Khan;D.T.Olson;J.N.Kuzina
  11. Jpn. J. Appl. Phys. v.37 W.J.Lee;H.S.Kim;J.W.Lee;T.I.Kim;G.Y.Yeom
  12. Mat. Res. Soc. Symp. Proc. v.449 K.Saotome;A.Matsutani;T.Shirasawa;M.Mori;T.Honda;T.Sakaguchi;F.Koyama;K.Iga
  13. J. Electron. Mat. v.26 A.T.Ping;A.C.Scmitz;I.Adesida;M.A.Khan;Q.Chem;J.W.Yang
  14. Appl. Phys. Lett. v.67 S.J.Pearton;J.W.Lee;J.D.MacKenzie;C.R.Abernathy;R.J.Shul
  15. J. Appl. Phys. v.67 E.A.Ogryzlo;D.E.Ibbotson;D.L.Flamm;J.A.Mucha
  16. J. Vac. Sci. Technol. v.A14 V.M.Donnelly
  17. J. Electochem. Soc. v.143 H.P.Gills;D.A.Choutov;K.P.Martin;S.J.Pearton;C.R.Abernathy
  18. v.482 K.Hiramatsu;H.Matsushima;H.Hanai;N.Sawaki
  19. J. Electon. Mat. v.26 C.R.Eddy;L.J.Glembocki;D.Leonhardt;V.A.Shmanian;R.T.Holm;B.D.Holms;J.E.Butler;S.W.Pang
  20. Appl Phys. Lett. v.70 B.P.Luther;S.E.Mohney;T.N.Jackson;M.A.Khan;Q.Chen;J.W.Yang