High Frequency Approximation for Earthquake-Induced Hydrodynamic Loads in Rigid Storage Tank

Ryu, Chung Son Yang, Woo Shik

ABSTRACT

The present paper describes an approximation for estimation of earthquake-induced hydrodynamic loads in rigid storage tank which accelerated in horizontal direction. The storage tank is vertically cylindrical, and the sectional shape may be circular, rectangular or irregular. The solution for harmonic excitation is studied based on velocity potential theory, and then the time domain solution for earthquake is obtained by using design response spectrum. As a result, earthquake load is influenced primarily by the inertia force of high frequency effective mass of the storage tank, responding to the characteristics of design response spectrum, tank sectional shape, and the ratio of tank base length to depth. Earthquake-induced hydrodynamic loads in rigid storage tank can be effectively obtained by using the high frequency approximation method in case of quite large, or small ratio of the tank base length to water depth.

Key words : storage tank, earthquake load, high frequency effective mass

1. 서 론

유체저장탱크의 지진력 산출은 이 구조물의 설계에 있어서 중요한 문제이다. 지진력 산출을 위해 널리 이용되는 고전적 방법으로는 Housner(9), API(2), AWWA(3)의 방법들이 있다. 이 방법들은 고주파수 유효질량(high frequency effective mass)과 유체의 공진운동으로 야기되는 유효 부가질량을 사용한다. 그 동안 많은 연구가 원형단면(4,6), 직사각형 단면(6), 불규칙단면(7) 등으로 대상으로 하여 수행되어 왔다. 탱크벽체의 탄성효과를 고려한 연구도 있었지만, 강체로 가정할 수 있는 경우에 있어서도 간혹의 고려나 단면형 지진저항 등 많은 설계상의 문제가 있다.(8)
고주파수 근사해를 적용한 유체저정탱크에 작용하는 지진하중 신정

국내의 연구는 벽면의 유연성을 고려한 동적해석(9), 경계요소-유한요소 연계법에 의한 해석(10), 유체-구조물 상호작용을 고려한 해석(11), 뉴질랜드 및 오스트레일리아에 대한 내진설계 기준의 비교연구(12), 지반계측데이터에 의한 동작응력(13) 등이 있다. 그러나 국내에서는 아직 육상용 유체저정탱크의 설계에 관한 명확한 기준이 마련되어 있지 않은 점을 감안하면 여러 분야의 다양한 관점에서 많은 연구가 발표되어야 할 것으로 보인다.

본 연구는 지진하중을 받는 유체저정탱크의 지진력 산정에 대하여 연구하였다. 탱크의 벽체는 강재로 가정하였고, 단면형은 원형 및 직사각형을 주로 하였으나 이와에 삼각형 및 불규칙형상도 비교연구로 다루었다. 전체 지진력에 미치는 요소는 여러 가지가 있으나 고주파수 유형절량의 건설력이 차지하는 비중을 주로 검토하였다. 연구결과, 설계용수밀도식[1]에 따라 차이가 있으나 고주파수 유형절량의 건설력은 탱크단면형상에 관계없이 지진력의 대 부분을 차지하며, 수수 길이에 대한 탱크벽면 길이의 비율이 상당히 크거나 작은 경우에는 좋은 근사해를 갖는 것으로 나타났다.

2. 조화가전에 대한 유체하중

지반운동이 다음 식 (1)과 같이 주기함수일 때를 우선 고려한다.

\[u(t) = U \cdot \exp(-i\omega t) \]

이기식 u(t)는 주기적인 지반운동의 속도이고 \(U \)는 진폭, \(\omega \)는 진동수 \(\text{(rad/sec)} \)이다. 또한 \(i = \sqrt{-1} \)이고 t는 시간을 나타낸다.

Fig. 1에 보인 수심 \(d \), 저 לדבר길이 2a인 유체저정탱크에 식 (1)로 나타낸 조화가전이 작용하면 유체는 지반운동의 진폭 및 진동수에 따라서 일정한 sloshing 모드로 운동하게 된다. 유체동계의 경계조건들(자유수면, 벽체면, 저렴면)을 만족하는 속도포텐셜방정식을 풀어 수면높이, 하중, 모멘트 등 탱크의 설계에 필요 한 물리적 수치를 산정할 수 있다. 이중 가장 대표적인 것으로서 탱크에 작용하는 전체수평력을 나타내면 다음과 같다.(11,13,17)

\[F(t) = i\omega U \left\{ m_w - \sum_{n=1}^{\infty} m_n G_n(\omega) \right\} \cdot \exp(-i\omega t) \]

여기서 \(m_w \)는 유체질량이고 \(m_n \)은 \(n \)번째 sloshing 모드에 관련된 모드조인량을 나타내며, \(G_n(\omega) \)는 동적중폭계수로서 다음식으로 정의된다.

\[G_n(\omega) = \frac{\omega^2}{\omega^2 - \omega_n^2} \]

여기서 \(\omega_n \)은 \(n \)번째 sloshing 모드에 해당하는 고유진동수이다. 문헌(11,13,17)에 기술된 바와 같이 \(m_w, \omega_n \)은 지진에 있어서 이 값들이 근본적으로 탱크단면의 길이, 형상 및 수심 값들의 함수이다. 이 값들은 원형 또는 직사각형 단면이면 해석적으로 구할 수 있으나 복잡한 비선형방정식을 풀어야 한다. 불규칙단면이면 문헌(17)에서와 같이 수치적으로 구해야 하거나 이론적기술자에게는 더욱 난해한 계산 과정을 요한다.
고주파수 근사해를 적용한 유체지장탐프에 작용하는 지진효과 산정

식 (2)로 나타낸 조화가진의 수명력을 유체의 유호질량 \(m_e \)의 관성력으로써 나타낼 수 있다면 편리한 방법이 된다. 즉,

\[
F(t) = - m_e \frac{du}{dt} = i \omega U (m_w + m_a) \\
\cdot \exp(-i \omega t)
\]
(4)

식 (4)에서 \(m_w \)은 관련된 항에 유체의 sloshing이 일어나지 않는다고 가정했을 때의 탱크벽에 작용하는 관성력이며, \(m_a \)는 포함하는 구역의 관성력으로 인한 음 또는 양의 추가주향을 나타낸다. 에너지감소가 없다고 가정하면 하중은 가속도와 위상이 같으므로 식 (4)는 정확한 표현이 된다. 이 경우 식 (4)와 식 (2)를 등치시켜

\[
m_e = m_w + m_a = m_w - \sum_{n=1}^{\infty} n_n \cdot G_n(\omega)
\]
(5)

를 얻을 수 있다. 식 (5)의 모우드질량(\(m_n \))중에서 가장 저배적인 것은 \(m_1 \)이며 따라서 처음 몇개의 모우드질량에 관련된 항만 고려하는 것이 효과적이다. 식 (3)에서 \(\omega \to \infty \)이면 \(G_n(\omega) \to 1 \)이므로 유호질량의 고주파수에서의 한계값(high frequency effective mass)을 고주파수 유호질량 \(m_0 \)과 표현하면 식 (5)로부터

\[
m_0 = \lim_{\omega \to \infty} m_e = m_w - \sum_{n=1}^{\infty} m_n
\]
(6)
로 나타낸다. 여기서 \(M \)은 고려하는 sloshing 모드의 갯수이다.

3. 감쇠효과를 고려한 조화가진 응답

실제 유체의 운동은 감쇠작용을 수반하는데, 이는 탱크벽면에서의 점성효과, 자유수면효과, 흐름바리효과 등의 여러 요인과 관련된다. 본 연구에서는 문헌(5)-(6) 등의 모델에서와 같이 속도포텐셜의 해가 가능하도록 동력학적 자유수면 경계조건의 수정을 통하여 감쇠효과가 고려되도록 하였다. 이 모델을 사용하면서 계의 감쇠가 있는 다자유도계의 동력학이론을 적용될 수 있다. 이 경우 통합된 자유수면 경계조건은

\[
\frac{\partial \Phi}{\partial t} + \mu \cdot \frac{\partial \Phi}{\partial t} + g \cdot \frac{\partial \Phi}{\partial z} = 0 \quad at \quad z = d
\]
(7)
여기서 \(\Phi(x, y, z, t) \)는 탱크 내 유체의 미시의 속도포텐셜이고 \(\mu \)는 감쇠계수를 나타낸다. 감쇠를 고려한 조화가진의 수명력은 식 (2)와 동일한 형태로 표현되는데, 여기서 사용하는 동작특성계수, \(G_n(\omega) \)는 식 (3)대신에 다음과 같이 수정한 값을 사용하여야 한다.

\[
G_n(i\omega) = \frac{\omega^2 + i\omega \mu}{\omega^2 + i\omega \mu - \omega_n^2}
\]
(8)

4. 지진에 대한 유체동력

지진기록은 기간이 짧고 비정상 과정이므로 시간영역계석이 주로 사용된다. 유체지장탐프에 작용하는 지진하중의 시간가속은 Duhamel 적분을 써서 다음과 같이 구할 수 있다.

\[
F(t) = \int_{-\infty}^{t} \ddot{X}_x(t) h(t - \tau) d\tau
\]
(9)
여기서 \(\ddot{X}_x(t) \)는 지진 가속도이고, \(h(t) \)는 충격응답함수(impulse response function)로서, 조화가진에 의한 응답(식 (2))에서 결정된 주파수응답함수를 Laplace 변환하여 얻어진다. 10%이내의 소량의 감쇠율을 가정하면 식 (9)는 다음과 같이 나타낸다.

\[
F(t) = - m_0 \ddot{X}_x(t) + \sum_{n=1}^{\infty} m_n [\omega_n \cdot \int_{0}^{t} \ddot{X}_x(t) e^{-\mu(t-\tau)/\omega_n} \sin \omega_n(t - \tau) d\tau]
\]
(10)

윗식 왼변의 적분항의 최대값(\([]_{\text{max}} \))을 \(S_A(\omega_n, \xi_n) \)로 나타내면 식 (10)의 최대값은
고주파수 근사해를 적용한 유체저항행렬에 적용하는 지진하중 산정

보편적인 SRSS방법을 사용하여 다음과 같이 산정할 수 있다.

\[F_{\text{max}}^2 = \left[m_n |x_n|^2 \right]_{\text{max}}^2 + \sum_{n=1}^{\infty} \left[m_n S_A(\omega_n, \xi_n) \right]^2 \]

(11)

한편 고주파수동수 \(\omega_n \)과 감쇠율 \(\xi_n \)을 가진 단차유도계 구조물의 가속도 응답스펙트럼(pseudo spectral acceleration)을 식 (11)의 \(S_A(\omega_n, \xi_n) \) 와 동일한 수식으로 놓으면 \(\xi_n = \mu / 2 \omega_n \)으로 정의된다. 대표적인 응답스펙트럼으로는 NRC 나 API\(^{(5)}\) 등의 응답스펙트럼이 있고 국내에서 는 도로공사공사 내진설계판\(^{(14)}\) 등에 설계응답
스펙트럼이 제시되어 있으며, 유체저항행렬의 경우에는 그 사용목적에 따라 적절한 것을 선
택할 필요가 있으나 본 연구에서는 API 및 한
국도로공사시방서의 설계응답스펙트럼을 사용
하기로 한다.

API의 설계응답스펙트럼은

\[S_A / G = 1.8 / T \text{ at } T > 0.72s \]

(12)

여기서 \(G \)는 최대 유해저항가속도이며, \(T \)는 고주파수 주기를 나타낸다. 식 (12)는 5%의 감
쇠율을 고려한 것이며, 모래나 정성토 지반에
해당한 것이다. 한국도로공사 시방서의 설계응답
스펙트럼은 (지반계수 \(S=1.0 \sim 2.0 \)을 적용)

\[S_A / G = \begin{cases}
1.2S / T^{3/2} & \text{at } T \leq 4s \\
S / T^{4/3} & \text{at } T > 4s
\end{cases} \]

(13)

이다. 이 값은 API응답스펙트럼에 비하여 1~2배로 크다. 식 (11)에서 고차 sloshing모드의 영향은 무시할 수 있는 것으로 알려져 있으며, 이에 따라 대개의 유체저항행렬의 설계관련 Code\(^{(5),(13)}\)에서도 최초 1개의 sloshing모드만 사용하는 간편식을 제안하고 있다. 따라서,

\[C_f = \frac{F_{\text{max}}}{m_n G} \equiv \sqrt{\left(\frac{m_0}{m_n} \right)^2 + \left(\frac{m_1}{m_n} \frac{S_A}{G} \right)^2} \]

(14)

로 정의하면 이는 최대 지진력의 무차원수를 나타낸다.

지진 가속도의 주파수가 주어 sloshing 모드의 고유진동수(\(\omega_n \))에 비하여 매우 큰 값이면 식 (12) 또는 (13)에서 \(S_A / G < 1 \) 이므로 식 (14)의 최대지진력계수 \(C_f \)는

\[C_f \equiv C_{f0} \equiv \frac{m_0}{m_n} \]

(15)

로 나타낼 수 있다. 현실적으로 일반구조물과
는 달리 sloshing문제에 있어서는 지진은 상대
적으로 고주파수인 점을 고려하면 식 (15)는초기설계와 같은 경우에 유체저항행렬의 수식
에 대한 지면길이의 비율에 따라 유용한 근사
식이 될 수도 있다. 식 (15)의 의미는 지진력
을 고주파수유효질량의 관상력으로 근사화한
다는 것이다. 본 연구는 이와 같이 고주파수
근사해의 유용성에 대하여 폐쇄미터 연구로
검토한다.

5. 예제해석 및 결과검토

본 연구의 예제해석을 위하여 원통, 직각공
형, 삼각형단면의 유체저항행렬에 대하여 수심
(\(d \))에 대한 탁자면길이와 \(2a/d \) 상대
까지 변화시켜 연구하였다. 단면형상이 주
어진 유체고유진동수(\(\omega_n \))는 \(2a/d \)에 따라
결정되므로 이 비율의 영향에 대한 수평지진
력의 산정이 필요하다고 보다.

Fig. 2는 원통단면 탁크에 있어서 \(2a/d \)의
비율에 따라 고주파수유효질량(\(m_0 \))과 제1모
우드질량(\(m_1 \)) 및 제2모우드질량(\(m_2 \))을 무차
원으로 나타내 보인 것이다.\(^{(6),(12)}\) 여기서 보면
탁크저항길이가 수심에 비해 상대적으로 길어
절수록 \(m_0 \)은 감소하고 \(m_1 \)은 증가한다. \(m_2 \)는 \(m_0 \) 또는 \(m_1 \)에 비해 현저히 작으므로 식 (11)
과 같이 SRSS방법으로 지진력을 산정하는 경우에
이의 영향은 무시할 수 있을 것으로 판단된다.
고주파수 근사해를 적용한 유체저장탱크에 작용하는 지진가중 산정

Fig. 2 Modal masses and high frequency effective mass

Fig. 3 Earthquake forces on circular tank

Fig. 4 Earthquake forces on rectangular tank

Fig. 3은 두 개의 다른 지진응답스펙트럼을 사용하여 구한 지진력을 고주파수유 효질량의 관성력과 비교한 것으로서, 고주파수 근 사해(abbrev.)는 API응답스펙트럼에 의한 값(spectrum1)의 약 80%이상을 차지하며 특히 2a/d가 1이하, 또는 15이상인 경우 거의 차이가 없다. 이것은 2a/d가 커짐에 따라 모수 드필딩의 비중이 지배적이 되더라도 유체공진 주기의 증가로 응답스펙트럼이 상당히 작아져 결국 이를 포함할 항의 영향이 현저히 작아지기 때문이다. 한국도로공사방식의 지진응답 스펙트럼으로서 지진력을 산출한 결과는(spectrum2; 최대가방계수 S=2.0용) 고주파수근사 해와 최대 40%까지 차이가 나지만 2a/d가 1이하거나 15이상인 경우는 큰 차이의 증폭은 도로공사방식의 응답스펙트럼의 API스펙트럼에 비하여 약 2배정도로 크기 때문이다. 도로공사방식응답스펙트럼을 적용할 때 점토나 실험의 연약성지반의 경우와 같이 대 한 결과는(spectr. 2-t; 지반계수 S=1.2용) API스펙트럼을 적용한 결과와 유사하게 약 20%의 차이를 보였다.

Fig. 4는 직사각형단면의 유류저장탱크에 작 용하는 지진력을 SRSS방법과 고주파수근사해 로 산정하여 보인 것이다. 여기서도 원형단면의 경우와 유사한 경향으로 2a/d가 1이하거나 15이상에서는 사용한 응답스펙트럼에 관계 없이 고주파수근사해가 SRSS방법의 값과 좋은 일치를 보이나, 1<2a/d<15인 경우는 사용응답스 편트럼에 따라 최대 20% 또는 40%의 차이를 나타내고 있다. Fig. 3과 Fig. 4에 공통적으로 지진하중은 2a/d의 비율에 따라 Fig. 2에 나타낸 m₀와 m₁의 합성작용으로 구해지지만, 2a/d의 증가에 따른 Fig. 2의 m₀의 감소경향과 Fig. 3 및 Fig. 4의 지진력의 감소경향은 대체적으로 유사하게 나타난다. 즉, 지진하중은 전반적 으로 고주파수 유 효질량의 관성력이 지배적이 라는 점을 나타낸다.

Fig. 5는 원형, 사각형, 삼각형의 3개의 단면 형태에 대하여 각각의 고주파수 유 효질량을 산 정하여 비교한 것이다. 여기서 삼각형단면은 일반과 높이가 같은 이등변삼각형이 고려되었 으며 지진은 일반에 직각방향이다. 2a/d의 비 율이 작을수록 고주파수 유 효질량은 커지게

제3권 제2호 (통권 제10호) 1999.6
한국지진공학회 논문집 5
고주파수 근사법을 적용한 유체저장탱크에 작용하는 지진하중 산정

Fig. 5 High frequency effective masses

\[\frac{m_e}{m_w} = \begin{cases}
1 - 0.2r & \text{if } r \leq 2 \\
1.2/r & \text{if } 2 < r \leq 15 \\
0.08 & \text{if } r > 15
\end{cases} \]

여기서 \(r = 2q/d \)이다.

Fig. 6은 평면에서 인용한 상수용 저수조의 단면을 보이는 것으로 저파리는 100m, 깊이는 5m이다. 여기서는 Newmark and Rosenblue의 응답스펙트럼을 사용하였고 가속도는 0.35g인 경우다. 처음 5개의 모드를 사용한 SRSS방법의 결과는 \(F_{\text{max}} = 6.8 \)MN으로 보고되었다. 본 연구의 방법으로 고주파수 근사해를 이용하면 \(r = 20 \)에 대하여 식 (16)으로부터 \(F_{\text{max}} \approx 0.06m_w \cdot \ddot{x}_{\text{max}} = 0.08 \times 265 \times 10^6 \times 0.35 = 7.3 \)MN으로 산정되며 SRSS방법의 결과와 비교하여 약 7%의 차이가 난다. 한편 단면률을 유지한 체, 단면길이를 1/10로 축소한 모형을 고려하면 (수심은 동일) SRSS방법으로 \(F_{\text{max}} = 510.3 \)kN으로 보고되었는데 이경우는 \(r = 2 \)이므로 식 (16)을 이용하여 \(F_{\text{max}} \approx 545.9 \)kN으로 산정 되어 약 7%의 차이로 역시 근사한 결과를 얻을 수 있다.

결론적으로, 고주파수근사해법은 어떤 설계조건에서는 오차가 그리 크지 않고, 설계조건 가속도와 식 (16)의 근사적 유효질량계수만 가지를 지진력을 산출하는 간편성 때문에 적은 시간과 노력이 소요되는 초기설계단계에서 잘 적용될 수 있을 것으로 판단되며, 특히 불규칙 단면형의 유저지장탱크라면 매우 유용한 대안이 될 것으로 보인다.

Fig. 6 Cross section of example reservoir

6. 결론

본 연구는 유저지장탱크의 수평저진력을 산정하는 방법에 대하여 연구하였다. 탱크벽체는 강체로 구성하였고 지진응답스펙트럼을 사용한 시간영역해석을 하였다. 탱크단면은 원형, 직사각형, 불규칙형 등으로 구분하여 비교하였다. 연구결과 저진력의 대부분은 고주파수의 유효질량의 관성력이 차지하는 것으로 나타났으며 적용하는 설계응답스펙트럼의 특성과 탱크단면형 수심에 대한 탱크저받기에의 비율에 따라 차이의 정도가 달라지는 경향이 있다. 탱크저받기에의 수심에 대한 비율이 1<\(q < 15 \)인 경우에는 고주파수 근사해가 SRSS방법과 비교하여 20%~40% 정도 작게 나타났다. 탱크 지반이의 수심에 대한 비율이 상당히 크거나 또는 작으면 탱크단면의 형상이나 적용하는 설계응답스펙트럼의 영향은 거의 무시할 정도이며, 이 경우는 고주파수 유효질량을 사용한 근사해로써 효율적으로 저진력을 산정할 수 있을 것으로 보인다.
고주파수 근사해를 적용한 유체저상탱크에 작용하는 지진하중 산정

감사의 글

이 논문은 1999년도 동신대학교 학술연구비에 의하여 연구되었으며, 이 지원에 감사드립니다.

참고 문헌