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A Graphical Method for Evaluating the Mixture Component
Effects of Ridge Regression Estimator in Mixture Experiments

Dae-Heung Jangl)

Abstract

When the component proportions in mixture experiments are restricted by lower
and upper bounds, multicollinearity appears all too frequently. The ridge regression
can be used to stabilize the coefficient estimates in the fitted model. I propose a
graphical method for evaluating the mixture component effects of ridge regression
estimator with respect to the prediction variance and the prediction bias.

1. Introduction

In mixture experiments, the measured response is assumed to depend only on the relative
proportions of the components present in the mixture. For mixture experiments, if we let x;
represent the proportion of the ¢th component in the mixture where the number of

components is ¢, then

lei: L

where 0<x,;<1, i=1,2,--,q. The experimental region is a regular (g— 1)-dimensional
simplex. When additional constraints are imposed on the proportions in the form of lower
and upper bounds

0KL=x;<UL1, where 1=1,2,-,4, (D

the experimental region becomes a subregion of the simplex.
Typically, mixture models are of the Scheffé type where the first-order model is

y= g:lb’,xﬁ €
and the second-order model is
y= Z,foﬁ 2%8 it e

where y is observed response and ¢ is random error. Scheffé models can be expressed in

matrix notation as
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y=XA+ ¢
where v=(y;,¥,**,¥,) is the vector of observed responses, X is the #Xp(<#) matrix
of the component proportions and cross-products between the proportions depending on the
model, B is the pX1 vector of parameters which appear in the chosen model, and

e=1(&y,€&,,€,) is the vector of random errors associated with y. Here p is the number

of parameters in the model, and the response at any location x in the region of interest is
Wx)= x, B+e
where x; = (x1,%,,°,%,) for a first-order model and X = (x| %p ", %0 X1Xg."*", X g—1%q)
for a second-order model.
Assuming the assumptions for ordinary least squares method are met, the vector of
unknown parameters is estimated by
b=(X'X) "Xy
where b =(by,by,-",b,) for a first-order model and & = (b, by, ", b5, b1, ", b1 ",
b,-1,) for a second-order model. Under the assumption that &~(0,0*I), the estimated

value of the response at any location x in the region of interest is
Wx)= xb. (2)

Unstable coefficient estimates arise from what is known as multicollinearity. Multicollinearity

is a condition among the set of p regressor variables xj,x2,-:*,x, in the model. If there

exists an approximate linear dependence among the columns of X, then we have the
condition usually identified as ill-conditioning or multicollinearity.

Various techniques for rectifying or reducing the effects of multicollinearity have been
proposed. A prevailing technique is the ridge regression although there are some criticisms(for
example, See Draper and Smith(1981)). Hoerl and Kennard(1970 a, b), and Marquardt(1970)
have suggested problems associated with a ridge regression estimator. The ridge regression
estimator for the parameters in the first order and second order polynomial models are
calculated using the formula

WR=(X'X+H) 'Xy, (3)
where % is a constant and usually 0<A<1.

The purpose of this paper is to suggest a graphical method for evaluating the mixture
component effects of the ridge regression estimator with respect to the prediction variance and
the prediction bias. In Section 2, I propose a graphical method for evaluating the mixture
component effects of the ridge regression estimator with respect to the prediction variance and
the prediction bias. In Section 3, I give numerical examples. In Section 4, I draw conclusion.
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2. A Graphical Method for Evaluating the Ridge Regression Estimator

Multicollinearity is introduced into the model-fitting exercise when trying to do mixture
experiments with the built-in mixture contraint, and additional constraints on components or
linear combinations of components. Therefore, we can use ridge regression estimator for
overcoming multicollinearity.

From (3), the variance-covariance matrix of ridge regression estimator b( %), is
Vard (B = (X X+ k) "X’ X(X' X+ k) L.
And, the predicted response value at x is

vo(x) = x5 b(R) (4)
= x, (X'X+H) 'X y.

Therefore, the prediction variance at x is
Varl y.(0)]=0" x (X' X+ k) ' X' XX X+K) 7" x. 5)
And, the prediction bias at x is
bias] y.(2)]=—Fk x, (X' X+k) 4.
Thus, the squared prediction bias at x is
bias?[ Y4 (0] =K B (X' X+ k) "' xy xy (X X+ k) ' 3. 6)
This bias is not model bias, but estimator bias under the assumption that the model is

correct. Let MSE[ y,(x)] be the mean square error of the prediction at x. We then note
that

MSEL y,(01= Varl 3,(01+ bias’[ 3,(2)).
By Hoerl and Kennard(1970a), we can obtain the following facts.

Fact 1. For all &0, Vad y(x)1> Varl y,(2)].
Fact 2. There exists £>0 such that MSE[ y(x)] > MSEl v,(x)].

Through fact 1 and fact 2, we know that ridge regression estimator is superior to least
squares estimator from standpoint of the prediction variance and the MSE when
multicollinearity exists.

bz'asz[ JA//@(J)] is a function not only of the particular location in the design region but also

the unknown vector £. A method for overcoming this difficulty is the use of the Euclidean

norm of the vector [. Thus, we can consider the following lemma 1.

Lemma 1. For a particular location in the design region, the maximum squared prediction

bias, given the constraint that Euclidean norm of the vector £, |8|=1, is
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max jg= bias’] ¥, ()] =1 AR)] (7
where A(R)=(X'X+k) ' xy 2, (X' X+kI)

Proof. biasz[ y(®] is a quadratic form in 4. Thus, we know that
max (5117 bias’] 5i(2)] =2y

where A, is the largest eigenvalue of A(k). Because A(%) has rank 1 and is positive

semidefinite,
SCIED W

where A; are the eigenvalues of A(k). Thus,
max - bias’[ ¥i(x)] =1 AR].

max g - bias’[ 9,(x)] is the maximum over the possible values for Q. Therefore, we can

max | ﬁ[:lbiasz[ Vi (,x)] as the numerical measure of the squared prediction bias at x.

When the mixture component proportions are restricted by lower and upper bounds of the
form (1), these restrictions make the reference mixture (or overall centroid), the centroid of
constrained simplex. When measuring the effect of component with respect to the predicted
response value, the prediction variance, and the squared prediction bias, and a reference
mixture other than the centroid of the simplex is to be used, Cox direction is generally
appropriate. Cox direction of component 7 is an imaginary line projected from the reference

mixture to the vertex x;=1. Cox direction was introduced by Cox (1971). Let us denote the

proportions of the ¢ components at the reference mixture by ¢ =(¢), ¢y, ", ¢c,) where

ﬁ‘c,:l. When the proportion c¢; of component ¢ is changed by an amount 4; in Cox
=

direction, so that the the new proportion becomes
xi=c;+4; (8)
the proportions of the remaining ¢—1 components resulting from the ¢; in the ith

component, are
L j=1,2,.q, j#i. 9)

Note that the ratio of the proportions for components j and k%, where x; and x, are defined

by (9), is the same value as the ratio of components ;7 and % at the reference mixture.
Let
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Vk(zc)=—Va%(“x—)]—= X (X'X+H) X' X(X' X+ k) 7 x, (10)

and

By(x) = max 4= bias”[ y,(2)]=KtAd AR)]. an
Using the idea of Cornell(1990) and Vining, Cornell, and Myers(1993), Jang and Yoon(1997)
proposed the response trace and the prediction variance trace as a tool for evaluating the
mixture component effects of the ridge regression estimator.

With the response trace and the prediction variance trace, I propose the prediction bias trace
as a tool for evaluating the mixture component effects of the ridge regression estimator. The
plot of By(x) along Cox direction of each component for some k, the prediction bias trace,
can be used to give comprehensive picture of the behavior of the maximum squared prediction
bias charge due to ridge regression over Cox direction of each component under constrained
region. These graphs - the response trace, the prediction variance trace, and the prediction
bias trace - can be used to examine the mixture component effects of the ridge regression
estimator on mixture designs with respect to the predicted value, the prediction variance, and
the squared prediction bias, respectively.

3. Numerical Examples

My first example is taken from McLean and Anderson (1966). The purpose of the

experiment was to find the combination of the proportions of magnesium (x)), sodium nitrate
(x2), strontium nitrate ( x3), and binder ( x;) for producing flare with maximum illumination,

McLean and Anderson (1966) suggested the 15-point extreme vertices design consisting of the
eight extreme vertices, the centroids of the six faces and the overall centroid of the region
along with the flare illumination data. A second-order polynomial was fit to the data. The
component ranges are 0.40<x,<0.60, 0.10<x,<0.50, 0.10<x3<0.50 and 0.03<x,<0.08.
We can use ridge regression because of multicollinearity in this example.

Using (10) and (11), we can draw Figure 1. Figure 1 compares the prediction variance
traces and the prediction bias traces for the extreme vertices design for several k. As 4
increases, the prediction variance decrease gradually and the maximum squared prediction bias
values increase gradually, but that when #k is greater than 0.004, this decreasing trend in the
prediction variance becomes very weak. When looking at these traces, it is important to keep
in mind that as the prediction variance values are decreasing, regression estimators become
more stable. Especially, the lowest prediction variance value of each component is located at
the nearby center of each range when £ is increasing. But, when £ is increasing, the lowest

maximum squared prediction bias values of component X1, X and x3 are gradually located

toward the boundaries of each component range, respectively, and the lowest maximum
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squared prediction bias value of component x, is located at the nearby center of the range of
component Xxy.

Cornell (1990} presented 15-point D-optimal design as a computer-generated design which is
generated by ACED program and compete with extreme vertices design, consisting the eight
extreme vertices, the centroids of the two faces and the midpoints of five edges of the region.

Using (10) and (11), we can draw Figure 2. Figure 2 compares the prediction variance
traces and the prediction bias traces for the D-optimal design for several k.

From Figure 1 and Figure 2, we see that the D-optimal design is similar to the extreme
vertices design with respect to the prediction variance when 4£=0.004~0.005. But, the
D-optimal design is different from extreme vertices design with respect to the maximum
squared prediction bias, especially in component x, and x3 according to the increase of k.

My second example is taken from Snee (1975). The objective of the study was to determine
the amount of additive (x;) needed in three lubricant blends ( x,, x3, x4) so that a certain
critical physical property would attain a desired level. Snee suggested 18-point design
consisting of the ten extreme vertices, one mid~edge point, six face centroids, and the overall
centroid. A second-order polynomial was fit to the data. The component ranges are

0.07<x,<0.18, 0.0<x,<0.30, 0.37<x3<0.70 and 0.0<x,<0.15. We can use the ridge

regression because of multicollinearity in this example.
Using (10) and (11), we can draw Figure 3. Figure 3 compares the prediction variance

traces and the prediction bias traces for the Snee design for several k. We can ascertain that
as k& increases, the prediction variance values decrease gradually and the maximum squared

prediction bias values increase gradually, but that when #& is greater are than 0.003, this
decreasing trend becomes very weak. From Figure 3, we see that the lowest prediction

variance value of each component is located at the nearby center of each range when £ is
increasing. But, when # increases, the lowest maximum squared prediction bias values of

component x, and x3 are gradually located toward the boundaries of each component range,
respectively, and the lowest maximum squared prediction bias values of component x, and x,

are located at the nearby center of each component range, respectively.
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FIGURE 1. COMPARISONM O THE PREDICTIONM VARIANCE AMD BIAS TRACES
FOR THE EXTREME VERTICES DESIGN USING RIDGE REGRESSION
(————- :K=0.000, ~———:K=0.001,0.002.0.003,0.004,0.005,
0.006(VARIANCE:FROM TOP TO BOTTOM, BIAS:FROM BOTTOM TO TOP))
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FIGURE 2. COMPARISON OF THE PREDICTION VARIANCE AND BIAS TRACES
FOR THE D-optimal DESIGMN USING RIDGE REGRESSION ( —————
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FIGURE 3. COMPARISON OF THE PREDICTION VARIANCE AND BIAS TRACES
FOR THE Snee DESIGN USING RIDGE REGRESSION (————-— :K=0.000,
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4. Conclusion

In this paper, a graphical method for evaluating ridge regression estimator have been
proposed. For mixture experiments, this graphical method - the prediction variance trace and
the prediction bias trace - can be used as a tool for evaluating the mixture component effects
of the ridge regression estimator.
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