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Rao—Wald Test for Variance Ratios of
a General Linear Model
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Abstract

In this paper, we propose a method to test H:p;=7; for 1<i:< /¢ against
K:p;#7; for some ¢ in Fk-variance component random or mixed linear model, where

p; denotes the ratio of the ¢-th variance component to the error variance and ¢ <k.

The test, which we call Rao-Wald test, is exact and does not depend upon nuisance
parameters. From a numerical study of the power performance of the test of the
interaction effect for the case of a two-way random model, Rao-Wald test was seen
to be quite comparable to the locally best invariant (LBI) test when the nuisance
parameters of the LBI test are assumed known. When the nuisance parameters of the
LBI test are replaced by maximum likelihood estimators, Rao-Wald test outperformed
the LBI test.

1. Introduction

One objective of Linear models for classificatory data may be inference about the ratio of
the variance of a particular set of random effects to the residual variance. For instance,
animal and plant breeders often investigate the heritability of some trait, and, under certain
assumptions, heritability is expressible as a strictly increasing function of a variance
component ratio. However, when a random or mixed model is unbalanced, we could not find
unified approach for testing variance ratio. AOV(Analysis of Variance) procedure fails to
decompose the total sum of squares into independently distributed sums of squares, and we
can not directly apply AOV procedure to test the variance ratios of a general linear model.
One of the classical approaches to handle the problem is employ Satterthwaite’s argument to
obtain an approximate test. However, in some cases the nominal significance level of the
approximate test is highly unreliable (see, e.g., Khuri and Little 1987, Kleffe and Seifert
1988). Thus an exact test procedure is desirable.

Wald(1940, 1941) constructed an exact confidence interval for the variance ratio in one way
random model, which is closely related to the testing problem. After Wald, many studies have
attempted to obtain exact tests for null variance ratio on specific models. For example,
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Spjotvoll(1967, 1968) and Thomsen(1975) derived an exact test for null variance ratios in a
two-way crossed classification model. These results were generalized by Seely and
El-Bassiouni(1983). They obtained a Wald test for testing null variance ratios by applying
reductions in sum of squares in a general linear model and provided the necessary and
sufficient conditions for the existence of a Wald test. They also showed that the test statistic
derived by Spjotvoll and many others are identical to that of Wald. Recently, attention has
been given to testing whether a variance ratio equals a specific value. For this testing
problem, the corresponding Wald procedure and various alternatives to Wald's procedure in
two variance components models have been devised (e.g., Burdick, Masqsood, and Graybill
1986; LaMotte, McWhorter, and Prasad 1988; Lin and Harville 1991; Huh and Li 1996). Huh
and Li (1996) showed that exact test for variance ratio is essentially unique.

Although an exact test is desirable for the problem, the test should have some optimal
properties. It is well known, when a design is unbalanced, that global optimum test for
variance ratios does not exist. Thus we should employ tests which have certain local optimum
properties such as LBI(Locally Best Invariant) test or Neyman-Pearson test. Lin and Harville
(1991) showed by numerical study that the Neyman-Pearson test and the LBI test are
slightly better than Wald test in two variance-component model. However, these tests have
several drawbacks. Firstly, when the model contains more than two variance components, the
tests depend on nuisance paramters. Secondly, Neyman-Pearson test statistic and LBI test
statistic do not follow known distributions. Hence to obtain the critical value for the test, we
need to solve nonlinear equation or to rely on simulation results. Thirdly, the computation of
the test statistics requires eigen value computation.

In this note, we derive a test statistic, which we will call Rao-Wald, to test selected subset
of variance ratios equal simultaneously to specified values in a general linear model. This
result is a slight generalization of Huh and Li’s work and resolves all the three problems of
the LBI test. The conventional Wald test for testing only one variance ratio equal to a
specific value is a special case of this work. We then examine the power performance of the
Rao-Wald test relative to the LBI(Locally Best Inavriance) test for the ratio of interaction
effect variance component over the error component in the case of two way random model
with interaction. Since an exact power of LLBI test is not available, we conducted a
numerical study to obtain the power of LBI test. Also for the LBI test, two main effect
component ratios are nuisance parameters. We considered two approaches for the nuisance
parameters. First approach is to assume the nuisance parameters are known, and we call this
test as theoretical LBI test. Second approach is to replace the nuisance parameters by the
maximum likelihood estimates. We call this test as two-step LBI test.
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2. Derivation of Rao—-Wald Test

Consider the following general linear model

y=Xor+ X &5+ + Xkt e, (1)

where y is a vector of » observations, X; is a nXb, design matrix, 7 is a byX1 vector
of unknown constants, &£; is a vector of b; uncorrelated random effects, and ¢ is a vector of
n random errors. Further we assume that &; and ¢ are statistically independent and are
multivariate normal random vectors with E(&)=0, Var(&)=c1, for :=1,2,..,k and
E(e) =0, Var(e) = o2 4, L.

We consider testing a subset of (p;,...,0s) equal to some values where p,-=o%/o‘i‘+1
i=1,...,k Without loss of generality, we can state the problem as Hpo;=17,..,0, =7,

against K p;#r; for at least one i where 1<i< ¢ <k To derive a test statistic for the

problem, we rewrite model (1) as
y=XE+ W+¢ (2)

where X=(X1....X,), W=(X,41,.. X0, £ =(2",&,41,...60) and & =(&,...,&,). For
the model we assume that each column space of X; i=1,..., ¢ is not a proper subset of

the column space of W ie.,

col(X;) & col( W) (3)
where col(A) denotes the column space of a matrix A. When ¢ =1, the assumption is equal
to the case of Seely and El-Bassiouni’s work to derive an Wald test for H p;=0 against
K 0>0.

Under the conditions (3), we have
rank (X, W) — rank (W)=m > 0. (4)

There are three cases under this assumption. First one is that the column spaces of X and
W are essentially disjoint, ie., col(X) Mcol( W)= {0} Balanced designs belong to this
case. Second one is that the column spaces intersect each other. Third one is that the

column space of W is a proper subset of the column space of X. We only consider the
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second case here, because it is trivial to derive a test statistic for the first case. and the
third case is identical to the second one.

Let C be a full column rank matrix of order (#—d)Xn such that CW=0,CC = I,_4

and CC=1,—W(WW) W', where d is the rank of W Muitiplying both sides of equation

(2) by C, we have
2= Cy= CX£t+ Ce, 5

Now consider a test based on z. It can be shown (see Rao, section 9, 1971, for example)
that the MINQUE of 6= (¢, -+, 05 0%+,;) for model (5) is a solution to the equation

So=u 6)

where S (,+pxe+n= tr(RV:RV),u, +1n=2RViRz, Vi=CX,X,C for i=1,-,2,

Vier= Li-q and

R=( glr,-v,.) l=(1+ z“r;Vi)_l 7)

with 7; denoting the a-priori values of p;= o%/aiﬂ, for i=1,-, ¢, and 7,.;=1.

To derive a test statistic for testing Hp;,=7r»; for i=1,2,..., £ against K p;+7r; for at

1
least one i, we consider the linear combination (2: riu; where u; is the 7-th element of u
=

1
of equation (6). (2 7:u; can be rewritten follows:
&

1
2 rau;= 2 R(1+ griVi)Rz =z'Rz (8)

We will decompose the quadratic form 2z Rz into two parts so that each of them follows an
independent central chi-square distribution under the null hypothesis.

Since ZriVi of (7) is symmetric, it can be expressed as
griV,-= QD( 7’) Q’ (9)
where IX#) is a diagonal matrix of eigenvalues of griV,- and & is the matrix of

corresponding eigenvectors. Let g be the rank of r;V; and assume the first g diagonal
=

elements of D(7) be nonzero. Note that m—g > 0 when some of 7;s are specified to be

zeros. Since & is orthogonal, we have
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R = ( I+ g“r,-v,) (14 QD()Q)

(10)
= U I+D»)'Q=QD; (NQ +QDQ
where
m—g n—d—m
DI (n) = diag(1/Q+A,(»),....1/(1+2,(,1,..,1,0,...,0)
D, = diag(0,...,0,1,...,1)
n—d—m
and A7) are the nonzero eigenvalues of r: V.

1=

1
Combining the results of (8) and (10), we can decompose 2 ru; into two parts as

follows:

1
2 riu;=2 Rz=2'QD; (» Q' z+ 2 QD,Q z. 11

Theorem 1. Under the null hypothesis, the distribution of 2z QD; (7r)Q'z/ 6%, is chi-square
with m degrees of freedom. Also z'QDzQ'z/oz,,H is a chi-square random variable with

n—d— m degrees of freedom and is independent of z' QDy (»)Q'z/ 0%y, for all o:

Theorem 1 is straightforward and suggests to consider the following quantity as a test

statistic for H.p,=7#; for i=1,2,..., £ against K:p;#7r; for at least one

n—d—m ZQD (nNQz
m 2 QD,Q z

The distribution of F is F{(m, n—d— m) under the null hypothesis and the null hypothesis

F= (12)

is rejected if the observed value of F is too large or too small

1
Remark 2.1: Under model (5), 2 7;u; is a linear combination of MINQUE's of p,'s. From

1
the decomposition of rau;, it is clear that 2'QD; (»)Q'z is a linear combination of the
b=

MINQUE's of p;'s. Hence based on z, 2z QD (#)@z is locally minimum variance unbiased

quadratic estimator at ;= r; for all 7 by the result of Rao (1973, pp 303--305).

Now we prove the uniqueness property of the test statistics (12). Theorem 2 is due to
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Seely and El-Bassiouni(1983). The theorem indicates that the quadratic forms 2z @QD,@Q'z in

(12) is the residual sums of squares of the model (1).

Theorem 2. Let Q,=y H.y where H. is any real symmetric matrix. If Q./ o‘i+1~ 22, then

v < n—d—m. Moreover, ifv=n—d—m, then &, is the residual sum of squares of the
model (1).

Theorem 3. Assume the conditions (3). LetA be any real symmetric matrix. If
v Ay/ 02k+1~ x:f, under the null hypothesis, H p,= r; for i=1,2,..., ¢, and is independent of

the residual sum of squares of the model (1), then rank(A)< m. Moreover, if
rank (A)=m, then A= C QD; (nQ C.

Proof : Because Var(y) is a positive definite matrix and ¥ Ay/o%4, is a central chi-square

random variable under H, we have

A( I+ g‘ir,X,X;-+ i=$+lp,-X,X;~)A=A for all ;>0 and
X AX,=0.

These imply that col(A)Ccol* (X, X, 41....,Xs) where col*(B) denotes the orthogonal
complement of col(B). Since C'C is the orthogonal projection matrices on column space
col " (Xy. X s +1.....X»), we have C'CA= A. Hence
A =4 1+ ﬁ;r,.x,-x;)A=Ac( Lo+ Zr,CX,-X}C)CA
" ’ (13)
—ac( 1+ lgr,-Vi)CA:AC'(QDl(r)Q’ +QD,Q)CA
The independence between 3 Ay and the residual sum of squares of the model (1), which
is equal to ¥ C @QD,@Q Cy, implies
CQD,QCA=0
and (13) is equivalent to

ACQD|(nNQ CA=A. (14)
ie., CQD(nNQC is a generalized inverse of A. Hence
rank (A) < rank (C'QD; (nQ C) = m.

Now we assume rank (A)= m. Let
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m

IV

D} = diag(1,...,1,0,...,0).
Then 1,_,=QDiQ + QD,Q’, and
A= CCA

= C(QDIQ + QD,Q)CA

= CQDiQCA (15)
= CRDI(NQ QD (NQCA

C QDI (nQ CC' QD(nNQ CA

Combining the results of (14) and (15), we have
(C QDI (HQ C— A)CQD,(HQ CA= 0.
e, col(CQD (NQC—A)Tcol *(C'QD(rQ CA). Noting that col(A)C col(C QD@ C),
but rank (A)=m= rank (C' QD;Q C) by assumption, we have
col(A) = col(C' QD] C)= col(C' YDy (NQC)

col(C' QD (nNQ C)= col(C QD; (rQ CA)
Thus
col(C QD (NQ C—A)Ccol *(C'QDIQ O),
and
col(C' QD (nQ C—A)T col(C QD Q O).
Hence it must be the case that

A=CQD,(nNQC.

Theorem 3 extends Seely and El-Bassouni(1983), and Huh and Li(1996)'s work. The
theorem 1s wuseful not only for testing non-zero null-hypothesis but also is good for
simultaneous testing problem.

Remark 2.2: When ¢ =1, the problem is to test a specific component in a general linear
model. Seely and El-Bassiouni derived an exact F-test by the reduction sums of squares
technique for testing problem with #; being specified to zero. Their test can be considered as
a special case of our test.

To obtain the power of the test, we note that the first m nonzero elements of the diagonal

matrix Dy (»;) are 1/(1+ 4y ...,1/(1+ 7r4,,), where the A,'s are the nonzero eigenvalues
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o v , C e +014;
of CX,X,C. Thus 2z'QD;(7)Qz/dss, is distributed as i-i—il/i %% where x%'s are

independent chi-square random variables with 1 degree of freedom. Since the numerator of F

in (12) is increasing with p; while the denominator is independent of p,, we reject the null

hypothesis H:p; <7, against K:p;> r; if the observed value of F is too large. Hence the
power of the test is given by

1+p4; JEN m 2
o)) = Pr[i 1+nA * > n—d—m X (16)

where xz is a chi-square random variable with #n—d— m degrees of freedom and ¢ is an
appropriate constant so that the test is of size @. It can be observed that the power of the
test depends on the design matrix through the eigenvalues of V. To compute the power of

the test, we need to compute the probability of a linear combination of central chi-square
random variables. Farebrother(1984) gives an algorithm for this problem.

Remark 2.3: When 7, is nonzero, usual Wald procedure which is described in Harville and
Fenech (1985), and Budick and Graybill(1992) require the compuation of eignvalues and
eigenvectors of nontrivial matrix in contrast to Rao-Wald procedure. As we noted earlier,

2 QD) z in (12) is the residual sums of squares of model (1). The test statistics in (12) can

be obtained easily by subtracting the residual sum of squares from 2z Rz.

Remark 2.4: When k=1, test statistic (12) is based on the MINQUE of model (1). This
point was argued by Huh and Li(1996). Since MINQUE is the locally minimum variance
quadratic unbiased estimator, Wald test or Rao-Wald test have certain optimal properties in
two variance-component model. When £> 1, Rao-Wald test does not based on the MINQUE
of model (1). It is based on the MINQUE of model (5). However, it should be noted that any
test of the null hypothesis H that does not depend on nuisance parameters is only through

the value of z.

Lin and Haville compared power performance of Wald test with LBI test and
Neyman-Pearson test. Under their model setting LBI test and Neyman-pearson test does not
contain nuisance parameter. Thus later two tests may be proposed test for the situation.
However, as we mentioned before two tests have several drawbacks in more than two
variance component models.
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3. Numerical study of the power performance of Rao—Wald test

There have been many numerical studies of power comparisons between Wald test and
other alternative tests including the LBI test. However, all the comparisons were done under
the models with only one random effect. In this note we compare the power performance of
the Rao-Wald test against the LBI test in two~way random effects with interaction model.
Our proposed test is of the form: H:p<7» against K p>». Without loss of generality,
however, we consider testing H:o=0 against K p > ( where p is the ratio of interaction
variance component to the error variance component.

For the numerical study, we consider four #,; patterns as given in Table 1. We categorize
(a) and (b) as “small sample designs”, and (c) and (d) as “large sample designs”. Also we
may classify (a) and (c) as “almost balanced” designs, and (b) and (d) as “highly unbalanced”
designs. For the parameter values, we consider the following combinations.

Main effect variance ratios: {0.5,1.0,5.0}
Interaction effect variance ratio: {0,0.01,0.02,...,0.30}

We can obtain exact power of Rao-Wald test from (16). However, we cannot obtain the
critical region and power of LBI test analytically. Hence we used simulations to obtain the
critical region and power of the LBI test. Our numerical study consists of 36 combinations of
experiments (4 designs, and 9 combinations of main effect variance components for each
design). For each experiment, we ran 31 simulations for each interaction effect variance

Table 1: four patterns for numerical study

nearly balanced highly unbalanced
(a) 3 2 3| 8 (b) 6 2 1| 9
3 2 4| 8 5 1 1| 7
3 3 2 8 6 1 1| 8
? 4 K1 q 1 1 7 Q
10 11 12} 33 18 15 10| 33
(c) 5 4 5 6|20 (d) 8 2 8 119
4 4 6 5|19 9 1 2 719
5 5 4 418 2 8 1 213
.| A ] 41 19 qQq 2 1 71 28
18 19 20 19{ 76 28 19 12 17|76
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component ratio. For each simulation, we used 100,000 repetitions to obtain the power of
theoretical LBI and two-step LBI tests. Numerical study showed that the pattern of the power
performance of theorectical LBI and two-step LBI tests were consistent over the 4 designs
with respect to the two nuisance parameters. Among the 4 designs, we present the results for
design (b) in Table 2 when p;=0.5,p02=5.0 and 0;=5.0,02=0.5. The pattern of the

power performance were similar for the other three designs considered. Table 3 gives the

results for all 4 designs when p;= p;=1.0.

We can observe several points from the tables.

1. Power of all three tests increases as sample size inreases.

2. Power of all three tests increases as the design gets more balanced

3. Pattern of the power performance of theoretical and two-step LBI tests remains

almost same for different values of o, and p,=5.0.

4. Power performance of two-step LBI test is quite unreliable for all the four

designs considered and for all the choices of p (refer to Figure 1). It can be seen
that the power of two-step LBI test is about 50% of the theoretical LBI test.
Especially the power drops to less than 40% of the theorectical LBI test for 0>0.15
for the design (d) which is specified as “large sample size” and “highly unbalanced”.

Table 2: Power of Rao-Wald, theoretical
when 0,=0.5,0,=>5.0 and 0;,=5.0,0,=0.5

LBI and two-step LBI test for design b

PI=0.5,02=5.0 Pl=5.0,02=0.5

theortical two-step theortical two-step
03 Rao-Wald LBI LBI LBI LBI
0.03 0.05933 0.06131 0.05430 0.06097 0.05338
0.06 0.06941 0.07356 0.05605 0.07302 0. 05457
0.09 0.08018 0.08927 0.05972 0.08632 0. 05996
0.12 0.09157 0.10380 0.06266 0.09930 0.06459
0.15 0.10351 0.11898 0. 06686 0.11334 0.06726
0.18 0.11593 0.13296 0.07003 0.12685 0.07220
0.21 0.12876 0.15016 0.07426 0.14182 0.07547
0.24 0.14194 0.16393 0.07683 0.15523 0.07846
0.27 0.15540 0.17777 0.07642 0.16728 0.08222
0.30 0.16910 0.19655 0.08117 0.18675 0.08547




Table 3: Power of theoretical

4 designs when p;=p,=1

LBI, Rao-Wald and two-step LBI test for all

Rao-Wald Test for Variance Ratios

Design (a) Design (b)
theortical two-ste theortical two-ste
05 LRI Rao-Wald LBI P LBI Rao-Wald LRI P
0.03 0.06507 0.06483 0. 05736 0.06279 0.05933  0.05335
0.06 0.08331 0.08135 0.06432 0.07697 0.06941 0.05822
0.09 0.10209 0.09934 0.07278 0.09043 0.08018 0.06115
0.12 0.12054 0.11855 0.08122 0.10306 0.09157 0.06418
0.15 0.14164 0.13876 0.08760 0.12025 0.10351 0.06671
0.18 0.16345 0.15972 0.09486 0.13484 0.11593  0.07051
0.21 0.18652 0.18125 0.10388 0.15037 0.12876  0.07543
0.24 0.20788 0.20314 0.11137 0.16218 0.14194  0.08038
0.27 0.22974 0.22522 0.12152 0.17996 0.15540 0.08338
0.30 0.25288 0.24736 0.12949 0.19739 0.16910 0.08728
Design (a) Design (b)

theortical two-ste theortical two-ste
o1 g Rao-W¥ald LB1 P e Rao-Wald 181 P
0.03 0.09038 0. 08923 0. 07505 0.08747 0.07810  0.06215
0.06 0.14076 0.13828 0.11139 0.13083 0.11221 0.06948
0.09 0.19716 0.19400 0.14333 0.17600 0.15080  0.08058
0.12 0.25545 0.25325 0.18454 0.22295 0.19230 0.09148
0.15 0.31554 0.31333 0.22261 0.27042 0.23530 0.10932
0.18 0.37607 0.37224 0.26073 0.31404 0.27867 0.11877
0.21 0.43099 0. 42857 0.29058 0. 35469 0.32153  0.14248
0.24 0.48270 0.48147 0.33012 0.39195 0.36323  0.14969
0.27 0.53119 0.53049 0. 36318 0. 42950 0.40336 0.16260
0.30 0.57580 0.57545 0. 39584 0. 46566 0. 44161 0.18010

5. For design (b) and (d) which are classified as
performance of Rao-Wald test drops. The relative performance of Rao-Wald test,

“highly unbalanced”, the power

however, stays above 82% of the theoretical LBI test for all the values of p

considered in this work.

6. Power of Rao-Wald test is generally quite close to that of theoretical LBI test

for all the four designs and for all the choices of p that is to be tested.

7. For designs (a) and (¢) which are classified as “almost balanced”, the power of

Rao-Wald test is almost equal to the power of the theorectical LBI test.

21
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4. Conclusion

Rao-Wald test procedure suggested in this work is applicable to simultaneous test of any
subset of variance ratios of a general linear model under some mild conditions. The

computation of the test statistic is straightforward since the terms 2z QD& z in (12) is the

residual sum of squares, and the terms 2'QD; (#)@Q'z can be obtained easily by subtracting

the residual sums of squares from 2 Rz. The computation of matrix R is straightforward

(Huh, 1981). Also Rao-Wald test statistic follows F-distribution under the null hypothesis.
Since Rao-Wald test does not depend upon the nuisance parameters, and the power
performance of the test is seen to be efficient for all the designs and parameter values
considered in this work, we propose that the test statistic suggested in this work can safely
be applied to a general setting.
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