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Abstract

The local influence method is adapted to quadratic discriminant analysis for the
identification of influential observations affecting the estimation of probability density
function, probabilities and log odds. The method allows a simultaneous perturbation on
all observations so that it can identify multiple influential observations. The proposed
method is applied to a real data set, and satisfactory result is obtained.

1. Introduction

Discriminant analysis is a multivariate technique concerned with separating distinct sets of
observations and allocating new observations to previously defined group by a discriminant
function. However, the performance of most common discriminant rules is sensitive to outliers
or influential observations. Recently, the detection methods of such observations are proposed.

In linear discriminant analysis, Campbell (1978) used the influence function. Critchley and
Vitiello (1991) and Fung (1992) independently proposed influence measures based on the case
deletion method. Kim (1996b) suggested the local influence method on the misclassification
probability and Jung et al. (1997b) extended that to the second order local influence method.

In quadratic discriminant analysis, Fung (1996) proposed several measures for detecting
influential observations based on the single case deletion. As mentioned in Fung (1996), a
single case deletion diagnostic may not identify multiple influential observations due to
masking. So further influence analysis is necessary.

Cook (1986) proposed the local influence method to assess the influence of local departures
from the assumptions in statistical methods or from the observed data. The curvature of the
likelihood displacement was used for measuring the influence of local departures. Wu and Luo
(1993) extended Cook’'s approach to the second order local influence method. The local
influence method allows a simultaneous perturbation on all observations. Our experience with
numerical examples reveals that the local influence method is very effective in detecting
jointly multiple influential observations and that it avoids the masking effect. In this work, the
second order local influence method is adapted to quadratic discriminant analysis for the
purpose of investigating the influence of observations on the estimation of probability density
function, probabilities and log odds.
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Section 2 contains a brief review of quadratic discriminant analysis and some perturbed
statistics for investigating observations that affect significantly the performance of the
gquadratic discriminant rule. In Section 3, under a simultaneous perturbation the local influence
method is explicitly derived. A numerical example is illustrated in Section 4.

2. Local Influence Diagnostics

Let %1,..., Xn and X, 41,..., X p+n, (#=n;+ n;) be two independent random samples

from p-variate normal density distributions N,( p;, %) and N,( pg,, %), respectively.

The quadratic discriminant rule assigns an observation x to population 1 if
(x— )T ZWx— p)+logl | < (x2— p)" T (x— py)+ logl B, (1)

and to population 2 otherwise. If g;, X;, 1=1,2 are unknown, the parameters in (1) are

estimated by the usual sample mean vector x; and the sample covariance matrix S; with
divisor n;.
We consider a simultaneous perturbation on all observations coming from two populations. It

is totally different from the perturbation of the influence function method and the case deletion
method, which can perturb a single observation. The perturbed model is specified by a

perturbation vector w = (wy,...,w,) | in which
x, ~ N,( p;, Zilw,), r=1,...,m, (2)
where the group index ¢ is changed according to the observation index 7. The perturbation

vector w can be written as w = 1,+al , where I=(/;,...,.,)7 denotes the direction
vector of unit length, scalar « indicates the magnitude of perturbation, and 1,=(1, ...,I)T of

order n. When a=0, that is w = 1,, the perturbed model reduces to the unperturbed
model.

A serious weakness of the quadratic rule is that it is sensitive to departures from normality
(Johnson and Wichern, 1992). For a measure of atypicality Fung (1996) used the Mahalanobis
squared distance of an observation from its group mean, which is defined by

~ ~ -1 ~ ~ — .
&= (x;— )" S, (x; — x;). Here x; = x, it je L ={l,..,m} and

~ ~

X, = x if je L ={m+1,..,m+n), and S, is similarly defined. Kim (199a)
proposed the local influence method on normality using the likelihood displacement approach.
To assess the local influence on normality, we consider the perturbed statistic defined as

Dw) = - J(d-d(w), =12, (3)

where d?( w) is the Mahalanobis squared distance under the perturbed model (2). That is,
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Ew)=( x;~ ()T S (w) ' x;— wm(w) i jel, where 2,(w) and
S| ( w) are the maximum likelihood estimators of g; and X, under (2), respectively. For

je I, df( w) is similarly defined. This statistic, however, is defined for individual

populations only and does not consider the specific structure of discriminant analysis.

We extend the diagnostic measures proposed by Fung (1996) to generally perturbed
statistics such as the square of relative probability (RPSQ), the square of relative log odds
(RLOSQ), the square of relative log odds for individual group (IRLOSQ) defined below.

RPSQ( w) = “}; /Zl[ 51( x].)— 51( x;, w)]Z’
" 2 2
RLOSQ(w) = - g[log{MZ]_log{M” |

n 2\72( x;) ﬁz( xj, w)
IRLOSQqw) = —} Zllog 7:( x)—log }i( x;, W, i=1.2,

where 7, (x)=(2m) " S| "Yexp{—(x— x)7S,'(x— x,)/2} is the plug-in estimate
of the normal density, p,( x)= F( x)/( L1 ( x)+ % ( x)) is the estimated probability that
observation x belongs to group 7, F( x, w) and »;( x, w) are the estimates corresponding

to 7,( x) and 2,(x) under the perturbed model (2), respectively. More precisely, 7:( x, w)
is obtained by substituting /;\1,-( w), S;( w) ™! into NJ_C,-, S;7' in 7(x), and thus
pi(x, w= Ji(x, w/( H(x, w+ K x, w).
Let Q(w) be the perturbed statistic under the perturbation (2), for example, D{ w) or

RPSC( w), etc. Then the (n+1) by 1 vector a( w)=( wT,Q( w)) T forms a surface in

the (»-+1)-dimensional space as w varies over a certain space. Since D{ w) and
IRLOSQ,( w) are not affected by the perturbation of the other population, the dimension »
reduces to #; The direction vector of the maximum slope of a path on the surface a( w)

at a=0 is considered for investigating the local behaviour of observations in quadratic
discriminant analysis. Further influence information can be obtained through curvatures on the

surface. The first and second direction vectors, namely [, and [, respectively, of the

surface at w = 1, corresponding to the largest and second largest absolute curvatures,

yield information about influential observations. Observations corresponding to significantly
large direction cosines of the two direction vectors above in its absolute value can be
influential. Here the absolute value of the curvature is required since the curvature can be
negative.

In the local influence method the influence of observations can be investigated as follows.

The first and second order partial derivatives of Q( w) with respect to a evaluated at a=0
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are
0 w) -3 0 w) /
r »
da a=0 r= 8w, w
INw) | I3 11
aaZ a=0 = = aw awr - rbs -
The curvature and its associated direction vector of the surface at w = 1, (refer to

equations (2.2) to (25) in Wu and Luo (1993)) are obtained by solving the generalized
eigenvalue problem

|F-B8Gl = 0, (4)

where F is the nxn matrix having 0°Q( w)/dwow, as its (7,s)th element,

w =1,

-T - . -T .
G=(1+ Q@ @ l/2( I+ @ Q ), and @ is the nXx] column vector whose 7th element

is dQ( w)/dw, ,, - ;. The curvature of the surface is given by the eigenvalue in (4) and

the direction vector [ is its associated eigenvector of unit length. This comes from the fact
that the curvature is equivalent to the value of IT Fl/ lT G [. For the perturbed statistics
D{ w), RPSQ(w), RLOSQ(w) and IRLOS w), G becomes I, because Q=10
which will be shown in Section 3. Hence [, and [ are the eigenvectors corresponding

to the largest and second largest absolute eigenvalue of F, respectively.
3. Derivation

Consider the quadratic discriminant function for two populations in (1). The perturbed
statistics proposed in Section 2 involve /}\l,-( w), S;(w), S{w) and | S;(w)l, i=1,2.

To solve the generalized eigenvalue problem (4), we need the first and second order partial
derivatives of the perturbed maximum likelihood estimators described above evaluated at

w = 1,. However, it is not necessary to get the second order partial derivatives of the
perturbed maximum likelihood estimators, which are not involved in the second order partial
derivatives of D{ w), RPSQ( w), RLOSQ(w) and IRLOSQ(w) evaluated at w = 1,.
It can be seen in Subsection 3.1 and 3.2.

The maximum likelihood estimators //\ti( w), S;( w) under the perturbation scheme (2) are

i w) = Z;w, %l 2w, (5)

Siw) = = Fwl x~ w0 x= m(w)". (6)

obtained by
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By differentiating (5) and (6) with respect to w, and putting w = 1,, the first order partial

derivatives of 71,»( w), S;( w) evaluated at w = 1, become
~ 3 ~ T £ €O I 7
Hir = .- £ w)’ e ( x,— x),
= 0 _ 1(n _ . INT
Si,r - awr S:( w) e 1 - n; ( X, xi)( X, xi) . (8)

where I,(7) be one if r=I; and zero otherwise. Hereafter, such notation as /;\z i » denotes the
first order partial derivative of a perturbed statistic with respect to w, evaluated at
w = 1, We have known that 9 S;( w)/dw,=— S;( w) "3 S;( w)/ow,) S;( w) !,

and (8) gives immediately
_ 11( 7’)

n,

S 1—7! = si-l( Xy~ ;z)( X,— —;,’)TS,'—I. (9)

Let C( w) be the perturbed matrix of a pXp symmetric matrix C with C( 1,)= C.

Then the determinant of C( w) can be rewritten as | C( w)| = Iallxi { w), where A{ w) is
=

the perturbed eigenvalue of jth largest eigenvalue A; for the matrix C( 1,). Thus

Following (6) in Jung

w= 1,

3l CCwlfow) . =1 Cl gla,,,m where 4, ,= 0, w)/dw)
et al. (1997a) leads to

2 = . -1
awr|C( W)I e 1 *IC,]Z]ZI C,k,,C,k , (10)
where Cj , is the (j,Ath element of d C( w)/dw,) ,_,, C ' is the (j,Ath element
of C L. Consequently, (8) and (10) give
l Si'r = 1;(7)I—;lgtl( X, ~;,')TS,‘—I( X, -;,‘). (11)

H

3.1. Mahalanobis Squared Distance

To get the curvature of the perturbed surface ( wT,D,»( w)T at w = 1, we need the
first and second order partial derivatives of D;( w) evaluated at w = 1, .

The first order partial derivative of D;( w) with respect to w, can be written as

2
Dikw = 52 Dlw = —L S w24

Then D, w)l ,—, = 0, for d*( w)=d* when w = 1,. The chain rule of the
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differentiation yields the second order partial derivatives of D, w) with respect to w,, w,

evaluated at w = 1, such as

Di.rs

=2 d* 4%
n; ¢
w= 1, : !

Since d%,=—2( x;,— w7 ST /;\z,;,+( x;— x)7 S,;,_l( x;i— “x,) for jel;, (7) and

(9) imply

D, .= ;2!,-3 I{n)ILs) ;i(zeijr_*— ezijr)(ze gt ezijs),

where e ; = ( x,— )TS X xj— x;). In what follows, such expressions as D, ,, are
interpreted as the second order partial derivatives of the perturbed statistics with respect to

w,, w, evaluated at w = 1,.

Since D;, is always zero, the generalized eigenvalue problem (4) reduces to the eigenvalue
problem. The eigenvectors corresponding to the largest and the second largest absolute
eigenvalue for the #n;X#n; matrix having the (7,s)th element D;, form local influence

diagnostics.
3.2. RPSQ, RLOSQ, IRLOSQ

As described in Subsection 3.1, it can be easily shown that the first order partial derivatives
of RPSX w), RLOS w), IRLOSQ w) evaluated at w = 1, are zero.

The second order partial derivative of the perturbed statistic RPSQ( w) becomes
RPSQ, = 2 3% 51, ( ) hrs( %)
Z(=D* 119 3,
=1 (

for kk =1,2. Since

( 71( xj) _?2( x,‘))z —?k,r( xg ?k',s( x;‘)
?1( xj)+ .?2( x,‘))4 .?/e( x,‘) .?k’( xj) ’

.?k r( x) 3
» . 1
2 AT 275, log Fe( x, w) -
_ -——" *?Sk'l' +2x— 27S7 B (2~ x)TS N x— x0),
k

therefore from (7), (9) and (11) we get

( ?1( xj) ?2( xj))z ¢ 1l i
1 ( ?1( xj)+ .?2( xj))4 k7= ks

RPSQ ,= 5 (=D " I(A1e(9 3

, 2
where e kir — e,m—Zek,-,—ekjr.

In the same manner, we can show that
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RLOSQ . —2#(— DM ¥ LD 4(s) Zle' kir € Kiss

IRLOSQ i = 55 I(ALLS) Zye e i
Note that the terms D ,, RPSQ,, RLOSQ , and IRLOSQ;, do not require the second
order partial derivatives of the perturbed maximum likelihood estimators under the perturbed

model (2) evaluated at w = 1,. The maximum slope direction vector in the surface by the

perturbed model is always zero, and so diagnostics through curvature is desired.
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Fig. 1. The scatter plot of [, versus [ for the surface (a) ( wT,D,-( w)) T
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4. Numerical Example

The local influence method is applied to two species of biting flies (Johnson and Wichern,
1992, p. 282), Leptoconops cartei and Leptoconops torrens. The two species were thought for
many years to be the same because they are very similar morphologically. The number of
observations for each group is 35 which have measurements on seven variables. The
observations. are labelled as 1 to 35 for Leptoconops cartei and 36 to 70 for Leptoconops
torrens. This data set has also been studied by Fung (1996). His conclusion is that it is
reasonable to view observations 1, 2, 15, 23, 36 as influential.

The scatter plot of [, versus [ for the surface ( wT,D,-( w)T for i=1,2 is

shown in Fig. 1 (a) overlaid by the direction vectors for each population. From Fig. 1 (a), we
can observe that observations 2, 15, 36, 39 are influential. The result of another local influence
method on normality (Kim (1996a)) is similar to Fig. 1 (a), so we omit it.

We have also get the results for RPSQ, RLOSEQ and IRLOSE, which are presented in
Fig. 1 (b) to (d), respectively. From these figures we may conclude that observations 1, 2, 15,
23, 36, 39 are influential in quadratic discriminant rule (1). Observation 39 seems to be

influential, for p,( %) is changed from 0.222 to 0.873 after removing observation 1 (See
Table 2 of Fung (1996)). It reveals that observation 39 may be masked by observation 1. The

local influence method can identify observation 39 as well as observations 1, 2, 15, 23, 36.
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