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Abstract

Ko(1998) proposed a procedure to enhance the efficiency of double sampling plans
by allowing second-stage sample size and critical region to depend on first-stage
evidence using constraint optimization approaches. In this study, further developments
of such plans by incorporating several practically possible researcher’'s aims into the
optimization are considered. Comparisons are made with the optimal ordinary double
sampling plan and also among them. It is observed that it is to some extent possible
to match the details of the optimization to certain qualitative methodological aims.

1. Introduction

Ko(1998) considers two-stage double sampling with variable second-stage. For such plans,
involving a second-stage, it is then possible to talk about error rate both of the entire
two-stage procedure, and also, in keeping with the ‘‘group sequential(Pocock(1982))'’ point of
view, of each of its two stages. These plans are '‘extended’’ double sampling plans, which
constitutes an extension of classical double sampling plans, in the sense that the second-stage
sampling effort and second-stage critical value are allowed to depend on the point at which
the first-stage continuation region is traversed. At the end of the first-stage an Interim
analysis is performed with the objective of deciding whether or not to continue the study
based on results of the interim analysis. If the study is continued, the first-stage information
is systematically put to work in conducting the second-stage, including its sample size and
critical region, with the goal of achieving agreed-upon overall, as well as stage-specific
operating characteristics.

Instead of the idea on previous work(Stein’s(1945)) which focuses on a nuisance parameter
( o), this study adapts the utilization of the parameter( #) of interest in first-stage
information. Such focus on the parameter of interest is particularly reminiscent of the
approach to sequential estimation indicated by Birnbaum and Healy(1960); and also of Miller
and Freund(1977)'s more recent proposal of an ad hoc method for determining the
second-stage sample size in binomial estimation problems. Where our approach differs from
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previous work is in our casting of the design of extended double sampling plans in the form
of constrained optimization problems. The objective functions for optimization problems are
conditional averages of sampling effort measures. In this research we consider and try to
demonstrate extended double sampling plans conducted in the two stages with several
practically possible objective functions.

Section 2 defines four possible objective functions which are considered by other authors and

brief reviews of the optimization. Section 3 gives and shows the OC and AST(Average

Sampling Time) functions for optimal plans defined in Section 2 and discusses the results.

2. Formulation and optimization

Wiener process and specifically, discriminating between the Wiener process with drift

parameter #, and the Wiener process with drift parameter g, g¢; > g, with assuming a
unit scale parameter, is considered for testing Hy:p=pg against Hp:pg = py>py, with
error probabilities P{Reject Hylu=py}=a and P{Accept Hylu=p,}=45.

In accordance with the group-sequential point of view, @ and g are equally allocated to
the two stages. Such allocations which is to be distinguished from the repeated-significant-
test usage(Armitage et al.(1969)) make possible independent assignment of error rates to both

stages. Under the given /2 and B/2 in the first-stage, the continuation region, (/, %), is
determined by initial sampling time 7. To satisfy the four stage-specific error rate
restrictions, 7T, must be taken from a feasible interval (0, T]. Given (To, 1, w), m
(respectively, p;) is to be accepted at time 7, if the process exceeds wu (respectively, is

below ). Further, if it equals an intermediate value s, / { s { u, then a predetermined

second-stage sampling plan is implemented, with sampling time 7, and critical value £k,
depending on s. Thus the plan is determined by three numbers (7},/, %), plus the two
functions {7/ < s < u} and {k:! < s < u}.

The plan (Ty [, u, {T s€ (I, w)}, {k; s€ (], w)}) is to be chosen in such a way as to

minimize an objective function measuring sampling effort, subject to stage-specific error rates
restrictions. Among the objective functions so considered are the following :

#)
i) F, = AST = (ul—,uo)"lf# AST,.dy

where AST T0+f \/_71'\/_——0 CXD[ 2 (—r— \/T ) ]ds
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i) Fy = AST,, where p = ﬁ“——;fi‘l

111) F3 = ASTM,

. e _ | 1 T2

) Fy = ASTy = [ ~ji-exol— (u— 11 AST,du 1)

The first objective function is the unweighted average of expected sampling times for the
values of p between pg and p¢;. The second is the expected sampling time for /1=71 .
The third is the expected sampling time for ¢= y;. The fourth objective function is the
weighted average of expected sampling times for all values of g in the interval (—oo, o),
the weights being provided by the (conjugate) normal prior distribution of x centered at 71
with unit variance.

These objective functions were considered previously by several authors in deriving their
optimal plans. Especially, Colton and McPherson(1976) consider the third one for deriving
their optimal plans which emphasize clinical efficiency when actual treatment differences
exist. Also, minimizing the second one, known as the Keifer-Weiss problem, is considered
by Jennison(1987). The first one is a generalization of a simple average of average sampling
efforts at two hypotheses points as considered by Thall et al.(1988). The last one is, in fact,

a common choice of many Bayesian approaches because of its conjugation.
Brief review of the conditional optimizations using objective functions in (2.1) is as follows:

Given T, [ and wu, we then minimize the function of 7T, ,F’'s in (2.1), subject to the
restriction that the second-stage error rates equal a/2 and f/2. It is equally possible to
consider second stages only, for example, AST®="AST - T, in case of F,. This
minimization is with respect to the second-stage sampling time function T, [/ < s < o,
and second-stage critical value function k&, /< s < w. We consider this restricted

optimizations by subdividing the continuation region (/, %), as determined by the first-stage
sampling time 7T, into a set of equally spaced m grid points where m is sufficiently large

enough to make sure the accuracy of numerical computations. Then, we simply abbreviate
formulation with a objective function to

minimize (7, ) FUT})
subject to g T, Tyo...., T ki, ... k) —a/2 = 0 and
gl Ty....,Tyk, ...k —B/2 =0
where f, gy, & are of additive form. (2.2)
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The solutions of (2.2) is obtained by a standard Kuhn-Tucker argument of solving Lagrangian
functions and separability of this Lagrangian functions. The details of this issues are due to
section 2 of Ko(1998).

3. Comparisons and further comments

By following the outlined procedures of section 2 and we can find the optimal plans for
F, F3, Fy, given the same error restrictions as those of Section 2. At optimum, sampling
effort is about equally divided between the first- and second-stages. Moreover, in the case
of objective functions F; Fy and Fy, T, is maximum for s roughly half-way between /
and u, and drops to approximately half that maximum at s = [/ and s = wu; while, in the
case of Fy, T, is largest at s = [/, and as would be expected, smallest at s = wu. These

features are shown in Figure 1.
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Figure 1 : Optimal second-stage sampling efforts and critical values

We also note this in contemplating our optimum sampling plans minimizing F, and F}:
even optimizing expected sampling effort right between g, and g, cannot counteract the

natural tendency of optimal sequential plans to call for maximal sampling effort in this

intermediate zone.
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For the case of (a, B, #y, ©;) = (0.05,0.10,0,0.50), the OC and AST functions

for the optimal extended double sampling plans corresponding to our four objective functions
are given in Table 1 and illustrated in Figure 2. The OC functions for all our plans are
essentially same. Actually, they are coincided within the third decimal points. AST functions

are alike, except for the case of F3. The plan corresponding to Fj is clearly best near g,
and worst near gy. Note that the AST of Fj3 is not uniformly smaller than that of the
optimal Ordinary Double Sampling plan( ODS™) in the neighborhood of ;. This is due to
different criteria of both optimizations. The AST function for F3 also dominates the AST
function of ODS" derived by using the analogue of Fj.

Parallel results for the case (a, 8, w¢, #,) = (0.05,0.10,0,1.0) also illustrated in

Figure 3.
It is equally possible to develop such designs for the other weights over parameter space or
hypotheses points and different allocations of error rates according to researcher’s aim.

Table 1 : OC, and AST, of optimal extended double sampling plans( EDS™) and optimal

ordinary double sampling plan( ODS") for the Wiener process w(0,1)and «(0.5,1)
with (e, £) = (0.05, 0.10) and m=64.

AST,

oDS” Fy Fy F3 F,

-0.500 19.95320 18.964783 19.061801 18.33289 18.77126

-0.375 20.16018 19.193370 19.282164 18.74168 19.01740
-0.25 20.85626 19.914601 19.982812 19.89402 19.78220

-0.125 22.55449 21.591626 21.623497 22.28006 21.53608
0.000 25.49407 24.401593 24.391660 25.80068 24.43582
0.125 28.89291 27.598187 27.565812 29.20155 27.68527
0.250 30.96834 29.568191 29.550958 30.62768 29.63280
0.375 30.34827 29.063548 29.088476 29.19697 29.04696
0.500 27.46079 26.417334 26.482561 25.84087 26.31535
0.625 24.08306 23.206890 23.293986 22.37129 23.06101
0.750 21.66190 20.804565 20.899243 19.98693 20.62395
0.875 20.46213 19.547288 19.644528 18.79896 19.35591
1.000 20.03515 19.068318 19.167046 18.35647 18.87170
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oc,
7
ODS” Fy F, F3 Fy
-0.500 0.99999 0.999981 0.999982 0.99998 0.999980
-0.375 0.99985 0.999819 0.999822 0.99978 0.999812
-0.25 0.99865 0.998542 0.998555 0.99835 0.998512
-0.125 0.99044 0.990237 0.990261 0.98976 0.990171
0.000 0.95000 0.949998 0.949999 0.95000 0.949998
0.125 0.82131 0.821766 0.821711 0.82324 0.821942
0.250 0.57307 0.573178 0.573168 0.57367 0.573246
0.375 0.29011 0.289651 0.289710 0.28830 0.289508
0.500 0.10000 0.100000 0.100000 0.10000 0.100000
0.625 0.02337 0.023772 0.023723 0.02479 0.023897
0.750 0.00392 0.004179 0.004149 0.00472 0.004254
0.875 0.00052 0.000593 0.000584 0.00073 0.000613
1.000 0.00006 0.000069 0.000068 0.00009 0.000073
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OC, and AST, of EDS* and ODS® for the Wiener process w(0,1)and
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Figure 3 : OC, and AST, of EDS" and ODS® for the Wiener process w(0,1)and w(1,1)
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with (@, B = (0.05, 0.10).
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