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Bayesian Methods for Combining Results
from Different Experiments?

In Suk Lee?, Dal Ho Kim3 and Keun Baik Lee¥

Abstract

We consider Bayesian models which allow multiple grouping of parameters for the
normal means estimation problem. In particular, we consider a typical Bayesian
hierarchical approach based on the partial exchangeability where the components
within a subgroup are exchangeable, but the different subgroups are not. We discuss
implementation of such Bayesian procedures via Gibbs sampling. We illustrate the
proposed methods with numerical examples.

1. Introduction

Recently there has been an increased interest in methods for combining results from several
experiments or observational studies. Given data from several experiments or observational
studies initially believed to be similar, it is desired to estimate the means corresponding to
one or more experiments of particular interest. A class of prior distributions for the means is
specified to reflect the belief that there are subsets of means such that the means within each
subset are similar, but the composition of such subsets is uncertain. One reason for this idea
is the ability to make reliable inference for each experiment (or study) by “borrowing
strength” from other selected experiments (or studies).

The related method is the meta-analysis, which combines inferential summaries from several
studies into a single analysis. DuMouchel and Harris (1983) proposed Bayesian methods for
combining the results of cancer studies in humans and other species. DuMouchel (1990)
described and illustrated the use of Bayesian hierarchical models for meta-analysis. Hedges
and Olkin (1985) surveyed the frequentist statistical methods of meta—analysis.

Often the population means are clustered into two or more subgroups. In this case, a typical
Bayesian hierarchical approach, based on the exchangeability assumption, would have the
weakness of Bayesian models. A useful substitute for exchangeability in this situation is
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partial exchangeability, where the components within a subgroup are exchangeable, but the
different subgroups are not. This idea has been suggested by Malec and Sedransk (1992) and
implemented with normal data. Later Consonni and Veronese (1995) considered combining
results from several binomial experiments. Recently Efron (1996) described empirical Bayes
methods for combining likelihoods to get an interval estimate for any one of the log-odds
ratio for a 2Xx2 table relating to the kth population in a series of medical experiments.

In this paper, we consider Bayesian models which allow multiple grouping of parameters for
the normal means estimation problem. Such models allow different shrinkage within each
group. This kind of behavior is termed “multiple shrinkage” by George (1986). We discuss
implementation of such Bayesian procedures via Gibbs sampling. In Section 2, we review the
idea of partially exchangeable model based on Malec and Sedransk (1992). In Section 3, we
study a Bayesian analysis with partially exchangeable priors based on Gibbs sampling which
is recently popularized by Gelfand and Smith (1990). This is Gibbs sampling version of Malec
and Sedransk (1992). In Section 4, we illustrate the proposed methods using two numerical
examples with no covariates.

2. Partially Exchangeable Models

Consider a collection of I independent normal experiments with experiment ¢ having mean

u; and variance o¢. That is, the y; are independent with y; ~ Ny, &) for

i=1,--,1, j=1,--,n, A typical Bayesian hierarchical approach would assume the ;s to

be exchangeable. Exchangeability at times may appear to be too strong an assumption. For

example, assume that, g; |v,8% ~ N(v,8?) independently for each 7 and v has an uniform
prior on (— oo, 00) where 02, and &% are assumed to be known. Then the posterior expected

values of p; is
Bl y,8) =3, 2t { (1= 2) 20, 5, 34

2.1
and

(H/n)8 | (o] my/ (] nit ) (22)

Var( ,-Iy,é‘2)= +
g ol nit & > (it )

where y denotes the observed data and A;= &%/ {82+ (&?/] n)}.

The weakness of this approach is that the amount of pooling in (2.1) is specified by the
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prior distribution. This may lead to unsatisfactory inferences when, for example, it is found

that /[zl, e ka are each close to fz(l) while ?lk+1. o, ?11 are each close to ?JQ) and
21(1)<< 71(2). Here, estimation of g, using (2.1) would include, perhaps inappropriately, a

large contribution from 7He+1, e /AJI. The difficulty is that the prior distribution for g is

not sufficiently flexible. To overcome these problems, one may wish to adopt a more flexible

approach, involving several partial exchangeability structures for the g; and then combining

the corresponding inferences.

Let G denote the total number of partitions of the set B={1, - ,I}. Denote a particular
partition by g (g=1, -, ), and d(g) denotes the number of subsets of B in the gth
partition (1< d(g)<D. Also, let S.(g) denote the set of experiment labels in subset & for
k=1, --- ,d(g). For example, for I=3 the partitions are g,=1{1;2;3}, &=1{1,2;3}
g:=1{1,3;2}), &=1{2,3;1} and g5=1{1,2,3}), and G=5 Clearly d(gy)=2 with
Si(g2)=1{1,2} and S,(gy) = {3}.

The basic assumption is to regard as exchangeable only the ;s associated with

experiments belonging to the same partition subset Si(g), whereas the u;’s relative to
experiments in distinct subsets are taken to be independent.

Specifically, we consider the prior distribution for g by first conditioning on g Then for a
given partition g, there is independence from one subset to another, and within S,(g), and
conditional on v,(g), the expected value of the experiment means in S,(g), the g, are

independent with

v ~ Nyg), g}, (ieSLe) (2.3)
and
v ~ N(6,(2), 7i(2). (2.4)
where 6%(g), 0.g) and 73(g) are assumed to be known. Our prior beliefs about the set
of specifications in (2.3) and (24) for i=1, -+ ,G are denoted by {p(g)} with ﬁ:}ﬁ(g)=1;
=
that is,

P( the elements of g are arranged according to partition g ) = p(g).
In particular, p(g) takes equal mass. That is, p(g)=1/G.

Conditional on partition g, it can be shown that,
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E(uly, 2= A8 ri+ {1-2(2) )12 1:(2)

+ {1 -2 H1—¢:(2)}0,(2 (1eS(g))
(2.5)
and
U1 -2} + {1-2( Vi 1 — o2} (i=t;i,t=S(2),
Cov(p; 1l ¥, 8)={ {1 -2 H1 -2 }7i() {1 —¢(2)} (it i, teSg),
0 (iESkl,tESkz,kf#kz),
(2.6)
where
Al =848+ (F/n)}
o) =048 8%+ {é‘i(g)/ IEZ"tg)/it(g)}] !
71,: gIYij/ni
and

M@= ) il Z M.

The estimator of u; in (25) is a convex combination of (a) the sample mean, 21[, from
experiment 7, (b) an estimator, 1,(g), using data from all experimental units in S,(g), and

(c) the mean, 0,(g), from the prior distribution (2.4). In particular, 1,(g) exhibits the
"gaining of strength” for estimation of the mean g; corresponding to experiment .

Let A ylg) denote the given normal likelihood. Then the posterior probability of g given ¥

is given as

wal 9) =R 3] 2 A ylne)
1
o« o) [f 1-sui0) 2 TT 1-a00) "

He)

1 { i— m(0)})? { 2:.(8)— 0(8)})°
con(~ 4 [ & Z, 000 B+ Bae HHEEAEN ]

2.7
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Then we can obtain the moments of posterior distribution as follows.
E(ply)= %‘.p(gl VE(1l y, 8) (2.8)

Var(u;| y)=E[Var (uly, 2| y1+ Var[E(yl v, 2) | ¥] (2.9)

and
Cov(p;, il v)=E[ Cov{(p, 1l ¥,8) | y1+Covl E(u;l y,8),E(u;ly,2) | y]
(2.10)

Note that the moments (2.8)-(2.10) are based on "model averaging” in Draper (1995) and
Maleck and Sedransk (1992).

3. Sampling-Based Approach

In this section, we obtain the Bayes estimator of & under the partially exchangeable model
using sampling-based approach. We consider the following hierarchical Bayesian model.

vy B M) =11, j=1,.n), (3.1)
rilve) ~ Ny, 84g) (ieSLe), k=1,-,dg) (3.2)
vi(@lg ~ uniform (— oo, c0) (3.3)
and
g~ g (g=1,-,6) (3.4)

For implementation of our Bayesian procedures, we use Gibbs sampler using the multiple
sequences which is suggested by Gelman and Rubin (1992). This method is to use several
independent sequences, with starting points sampled from an overdispersed distribution.

Specifically, we run ¢ (=2) parallel chains, each for 2¢ iterations. To diminish the effects of

the starting distributions, the first ¢ iterations of each chain are discarded. After ¢ iterations,
all the subsequent iterates are retained for finding the desired posterior distributions, posterior
mean and variance, as well as for monitoring the convergence of the Gibbs sampler.

The joint distribution of ( ¥y, gz, v, g can be written as

1 (i vl@)®
Ry, p, v g { ﬁl ,-E]S_Lg)ﬂ yilﬂf)}p(g) fji - .(g)[ 5:(2) exp{* 26%(;) }]

where

y=0y1,", ¥y,

yi:-(yzl;'“,yin,) (i:l’---,D
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and
p=(py, ).
From the joint distribution we can obtain all the full conditional distributions as follows.

Aely,vig), o

o ﬁ ];I 1 exp] — (= (1= 2A(@)vil@ + A:(2) vy .))*
2 iesio nft+ 10 g) P 2(n;/oi+1/5% 2))
(35
where
_ ) L
MO s (Tl
And
vl y, 1,8 (36)
S oo~ Gy o= B
where m(g) is the size of S,(g) under the partition g. Finally,
ey, v, vlg) (3.7)

1 1
« 1 0,5 x|~ gakg (4 Vi@’

Thus we obtain the following full conditional distributions ;
iy 4 y.v@. g ~ NIU - v +2,(8) yi, niloi+1/8(e)]
(ieSKg), k=1,,d2)

(i) v(@)l y, 1, g ~ NI ,-e§g>”"/m(g)’ 83D /m(] (k=1,-,d();

pgly, v,ulg)= [ ﬁl g .<g>78;1T§ exp{— ZTli(g)- (u,-~vk(g))2}]

) 1 _ 1 _ 2
(111) - [ggl I_fl N ) exp{ 25%(g) (ui—vi(2) }].
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To estimate the posterior moments, we use Rao-Blackwellized estimates as in Gelfand
and Smith (1991). Note that

Eluly,vide,gl=1-2()vie+ile v, (3.8)
where €S ,(g), £=1,---,d(g). Using (3.8), we have

Euly. 9~ 1 3 3 [1-2,)vi 9 +14 5.] (39

Thus we can obtain

E(ud v) =Zg1>(gl WE(uly, g . (3.10)

Next to estimate the posterior variances Var(g;|y), at first we consider
Var(p |y, vi(8,8)=n &+1/ 84 (3.11)
where 1€S,(g), i=1,-,d(g). Then we can obtain

Var(nily, g
=E[Var(p|ly,v(g, 2]+ VarlE(uly,vi2),2)]

~(n) 1ok + 1 B 3 [A-2 @i @+l yi—E ]’
(3.12)
where E ;= ; Igﬂ{(l—-/ii(g))u,(,t'b(g)%-/{,-(g) y; }cq. Finally we can have

Var(#il y)
=E[Varlu;ly, @1+ Var[E(uil v, 8]

) 2.
= 3 Var(ul v, 00sl D+ 2 ECuil v, 875l 9) - 2Bl y.90(81 ) .
This can be approximated easily using (3.9) and (3.12).
4. Numerical Examples
4.1 Example 1

In this subsection, we will illustrate the results obtained in Section 2 and 3 with sample

data. Suppose we have four sample means, ¥,=2.0, ¥,=5.1, y3=5.2 and y,=15.0. So

we have I=4. We consider the following partitions; g;=1{1;2:3;4}, g =1{1,2,3;4},
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g:=1{12,43}, g£=1{123,4}, g=1{1;2,3,4} and gz=1{1,2,3,4}. Clearly d(g,)=4,
dg)=3, dlg)=3, dlg)=3 dg)=2 and d(gg)=1 For the prior we choose
=1.0 and (& (1), 8(1), 85(1), 8,(1)) =(1.0,1.5,2.0,2.5), (81(2), 8,(2), 8:(2))=(1.0,
1.5,2.0), (8;(3), 65(3), 85(3))=(1.0,1.5,2.0), (8,(4), 8,(4), 85(4))=(1.0,1.5,2.0),

(8, (5), 8,(5))=1(1.0,1.5), and 8,(6)=1.0. We have 10 Gibbs chains which use starting

points drawn by the overdispersed distribution. We use 2000 replications. Actually the first
1000 are used for burn-in samples so that the last 1000 samples are used for our
computations.

We have three separated groups. For our partially exchangeable normal priors, the posterior
probabilities of g are presented in Table 4.1. Table 4.1 shows that p(g=2] ¥) is the highest
posterior probability. That is, the grouping g£;= {1;2,4;3} is the best grouping and has the
highest weight in calculating the posterior moments. Posterior means and posterior standard

deviations are presented in Table 4.2. Table 4.2 shows that posterior means are closer to },;

in the partially exchangeable case than in the exchangeable case. We observe that multiple
shrinkages have been occurred in the calculation of the posterior means in the case of the
partial exchangeability.

Table 4.1. Posterior probabilities for a selected collection of partitions g

for 4 sample means

Partition el y)

{1;2:3:4} | 0.40791960
{1;2,3;4} | 051283640
{1;2,4;3} | 0.03133038
{1;2;3,4) | 0.02368235
{1;2,3,4} | 0.01336101
{1,2,3,4} | 0.01087032

S T W N

Table 4.2. Estimates of p; and standard errors (in parenthesis)

for 4 sample means
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i ) W Exchangeable Partially
I model exchangeable model

L1 44125 2.011535

, (0.728869) (1.748060)

2 5.9625 5.187431

1 (0.728869) (1.500487)

3 6.0125 5.232480

| | (0.728869) (1.428161)

4 109125 14.817180

] ‘ (0.728869) i (1.513829)

4.2 Example 2

In this subsection we accomplish the same calculation process as in Subsection 4.1 with 3

sample means. We have y,=1.1, =12 and y;=10.0. We have I=3. The
interesting partitions are g, = {1;2;3}, £,=1{1,23}, g=1{1;2,3} and g,=({1,2,3}. Clearly
d(g) =3, dlgy)=2, d(g)=2 and d(gy)=1. For the prior we choose ¢*=1.0 and
(8,(1), 85(1), 65(1))=(1.0,1.5,2.0), (8;(2), 3:(2))=(1.0,1.5), (8,(3),8,(3))=(1.0,1.5),

and 0,(4)=1.0. The estimation procedures using Gibbs sampling are the same as that of

Subsection 4.1.

We have two separated groups. The posterior probabilities of partition g are presented in
Table 4.3. As one might expect it, Table 4.3 indicates that p(g=2|y) has the highest
posterior probability. That is, the grouping g&,= {1,2;3} is the best grouping and has the

highest weight in calculating the posterior moments. Posterior means and the corresponding
standard errors are presented in Table 4.4. Table 44 shows that the posterior means are

much closer to },—. in the partially exchangeable case than in the exchangeable case. So we

have the same observation as Subsection 4.1.

Table 4.3. Posterior probabilities for a selected collection of partitions g

for 3 sample means
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Partition Hgly)
{1;2;3} 0.35632670
{1,2;3} 0.42607390
{1,2,3} 0.09401340
{1,2,3} 0.12358590

W N~y

Table 44. Estimates of g; and standard errors (in parenthesis)

for 3 sample means

i Exchangeable Partially |
model exchangeable model
1 2.60 1.272638
(0.541667) (1.6947900)
2 2.65 1.556361
(0.541667) (1.6658700)
3 7.05 9.199573
(0.541667) (2.1242790) |
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