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Abstract

An approximate Bayes criterion for Behrens-Fisher problem (testing equality of
means of two normal populations with unequal variances) is proposed and examined.
Development of the criterion involves derivation of approximate Bayes factor using
the imaginary training sample approach introduced by Spiegelhalter and Smith (1982).
The proposed criterion is designed to develop a Bayesian test criterion having a
closed form, so that it provides an alternative test to those based upon asymptotic
sampling theory (such as Welch’'s t test). For the suggested Bayes criterion,
numerical study gives comparisons with a couple of asymptotic classical test criteria.

1. Introduction

Suppose two independent samples X (1),...,X,(1) and X(2),...,X,,(2) are obtained from

two univariate normal populations My, a¢) and Mu,, 02), respectively, where the population
variances are unknown and not the same. For the two samples case, many statisticians have
drawn attention to the problem of testing the equality of the two means, and this problem is
called the Behrens-Fisher problem. See for example Rencher(1995), Johnson and Wichern(1992),
Hogg and Tanis (1993), Scheffé(1943) for testing the problem with sampling theory approach.
Hattmansperger(1973) and Ghosh(1975) respectively suggested a nonparametric test and a
Stein-type two-stage procedure for the problem. For Bayesian approach, Johnson and
Weerahandi(1988) gave a Bayesian solution to the Behrens-Fisher problem. They provided
exact and approximate methods for calculating posterior probabilities for the difference between
two normal means. Then they constructed 1-—e Bayesian credible interval to test Hy:py= ua,

o>+ o5 (using Lindley’s method). However, the Bayesian method can be criticized in two
reasons. First, it needs massive computations for a numerical integration involved in calculating
the posterior probability. Second, as pointed by Lee(1988), Lindley’s method is not the best
way of summarizing posterior beliefs of H,(comparing to formal Bayes test criterion, i.e.
Bayes factor).

The aim of this paper is to develop an alternative Bayes criterion for testing the
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Behrens-Fisher problem which eliminates the problems of the Bayes test mentioned above.
The development involves calculation of posterior probability of each possible model( M;: g,
=4y, oi+0; and Myipu *pu,, o*+d2) via a default Bayes factor, and suggests a test criterion
in terms of the posterior probabilities so that the Behrens-Fisher problem can be resolved in a
simple and formally justifiable way. In Section 2, we review the default Bayes factor obtained
from applying the device of imaginary training sample method introduced by Smith and
Spiegelhalter(1980) and Spiegelhalter and Smith(1982). In Section 3 we suggest a Bayesian
criterion for comparing(or testing) the hypothesized models in the Behrens-Fisher problem.
Section 4 examines the performance of the suggested criterion and notes some comparisons
with traditional tests. Finally, Section 5 includes some concluding remarks.

2. Default Bayes Factor

Suppose we have data D, assumed to have arisen under one of two alternative models M,
and M, having probability densities p(D| 8;, M,), where parameter vectors are unknown.
Given an improper prior #(8;| M,) for the parameter of each model, together with prior p, of

each model being true, the data produce the posterior probability of M, being true as

D M)p;

AHM;| D)= ,
S14D1 1),

1=1,2, 2.1

where p+p,=1 and the density DI M;) is called the marginal likelihood or predictive
density of D and is defined as

o(D| M)=C, [ oD 6, M)n(6,| M)db,, (2.2)

where C; denotes the normalizing constant so that C; a(8;| M;) may be proper over the
parameter space 6,, 6,€6;.

The Bayes factor(cf. Jeffreys, 1961) for M, against M, is defined by

sDIay  Cif D) 6, M6, | M)db,
- - - (2.3)
KDIM) = ¢, [ KD 6, MY(6, | My)db,

By,

As seen above, the Bayes factor denotes the ratio of the posterior odds of M, to its prior

odds, regardless of the value of the prior odds. Thus B, can be viewed as the weighted
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likelihood ratio of M; to M, and hence can be a criterion for measuring comparative support
of the data for the two models(cf. Kass and Raftery 1995). The posterior probability (2.1) that
M, is true is then expressed in terms of B,.

In the model comparison, most Bayesians today prefer to use noninformative priors that are
typically improper. Such priors are defined only up to a constant multiple, and hence the
Bayes factor is itself a multiple of this arbitrary constant(cf. Kass and Raftery 1995). As is
the case, computing B), in equation (2.3) requires specification of a ratio of undefined
constants, C,/C,. Thus, it is not possible to utilize B, for the comparison between M; and
M,. One effort to resolve this problem(specification of C,/C,) is the "training sample method”

that puts aside a training sample which is combined with the improper prior to produce a
proper prior distribution. This idea was introduced by Lampers(1971), and other
implementations have been suggested under the name of partial Bayes factors(O’Hagan 1991),
intrinsic Bayes factors(Berger and Perrichi 1996), and fractional Bayes factors(O'Hagan 1995).
However, the training sample approach is clearly impractical if complete data set itself is
rather small, or if the data derive from a highly structured situation, such as complete
randomized block experiment. In such a case, setting a training sample aside would destroy
the overall structure(say, symmetry and orthogonality) of the remaining observations.

Another solution to resolve the specification problem of C,/C,, which does not involves the

above problems attached to the training sample approach, is the "imaginary training sample
method” of Spiegelhalter and Smith(1982) and Smith and Spiegelhalter (1980) which uses
imaginary observations to determine ratio of undefined constants( C,/C,) in the Bayes factor.

In this paper, we will invoke the imaginary training sample method in order to specify C,/C,

in the comparison of M, and M,.

3. Test Criterion

Suppose we have two independent univariate normal populations [I; and II, each specified
by a model M, i=1,2, where M, defines the distribution of each population distribution

I~Mp, 08, k=1,2, where parameters are unknown. Let our interest of model comparison

be homogeneity/heterogeneity of the means between two populations. Then the model
specification becomes

M, iy =py=pu , G>F05  Versus M,y #py, , GFo. 3.1)

Let X,(B),X.(A,.. X,(k be independent sample of size #n, from II, with distribution

N(py, 32, k=1,2, and let denote the two independent samples from /I, and II, as D. If we
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define X(k= Z;X,-(k)/rik and V,= z"(Xj(k)-—X'(k))z. Then the data D is to have arisen
1= 1=

under M, and M, according to respective probability densities given by

e

oD wd. )= [1mF o e~ 0], (32)

Ny

KDy, . &, G M) = [T (20) 2 a;"'exp{-2%%g;], (33)

where .Qk: Vk+nk(p—7((k))2 and .QZZVk+n;,(,uk——7((k))2.

Since our interest focuses primary on a statement concerning to relative probability that D
comes from one or the other of the model, and not about making probability statement about
where a parameter lies, we shall use a particular convenient prior density to reflect a
noninformative information about the unknown parameters. In this paper, we shall be

concerned with the case here both priors (g, o, 6| M;) and x(py, oo, 05, 05 | My) have

improper limiting form of the univariate normal-inverse chi-square conjugate priors(cf.
DeGroot 1970 Smith and Spiegelhaiter 1980) that can be written by

u, 00,0 | M) = C )i(zﬁ)‘”%;{ (3.4)

gy, iy, 00,00 1 My) = G lel(ZﬂGi)_l/ZU;Z, (35

where C;, i=1,2, are undefined constants.

Lemma 3.1. Under the improper priors (3.4) and (3.5), respective marginal likelihoods
conditional on M; and M, are

p(D|M1)=c,exp{~§3})j‘{dknk(nk~1)‘”“(2n)‘""2 v }[1+0,,( 1 )]

Ny

(D My)=C, JZL{ 45 ni V2 (2m) TRy ),

2 2
Q= (7((1)—7((2))2/(3%/711+S§/nz), S;Zk = Vk/(nk—l) .

where Ak:2<n.+1/2)/21< nk+l/2), A;=2"‘/zf<ﬂ),

Proof. See appendix for the derivation of p(D| M), p(D| M,;) is obtained from the following
procedure. According to the definition of the marginal likelihood (2.2), (3.3) and (3.5) yield
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DI M) = C, [2n) 4"’””2)/2&13‘0[("‘”)
Xexp{—% z\( V’”+nk(7((k)_/‘k)2/02/e} J:Ldﬂk}ldoi. (3.6)

Integrate the integrand in (3.6) with respect to g, s using univariate normal normalizing

constant. This gives

sz(zﬁ) ~(nl+n2)/2Ji{nk—l/ZGk—(n.+2)}exp{_% iz‘ Vk/d?e}}idai- 37)

Then the desired marginal likelihood AD| M,) is found by integrating with respect ¢'s,

using the inverse chi-squared normalizing constants (cf. Lee 1988).
The marginal likelihoods, p(D| M) and K DI|M,), are clearly indeterminate owing to the

presence of the undefined constants, C, and C,. Therefore, as #n — oo, Bayes factor for

comparing M; with M, is itself a multiple of these arbitrary constants such that

ADIM) C ne \M [{M}
Bm:WzéZlﬂgp[”‘éQ}}jl( n,,il> )1

2 y
1%)
S5

ny

(3.8)

2
where Q=<’X(1>—F<<2>>2/(§;T+ ) R=Vilve, v=(m—1).

A solution for this problem is to construct a default Bayes factor by means of imaginary
training sample. This method, so called the imaginary training sample method, for assigning
the constants C,/C, has been proposed by Spiegelhalter and Smith(1982). The basic idea, a

variation on a theme of Good(1947), is to image that a imaginary training sample data set is
available which is defined as follows.

Definition 3.1 (Spiegelhalter and Smith 1982). A data set is called the imaginary training data
set if it is available, which

(i) involves the smallest possible sample size permitting a comparison of M; and M, ;
(i) provides maximum possible support for M,, so that it may vyield the Bayes factor
By, = 1.

Using the definition, we can obtain the imaginary training sample to eliminate the
indeterminacy of the Bayes factor in (3.8). Lemma 3.1 and the condition (i) of Definition 3.1
require that a minimal size of the imaginary training sample i1s 2 for each population

Iy~ Ny, 62 defined by M,, k=1,2, because we need at least 2 observations in order to be
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able to estimate o¢f and u,. Since M, C M,, we see that the imaginary training sample of
size 2 for each population is minimal sample size for the comparison of M, and M,. Under

the imaginary training sample of total sample size 2x2, the approximate Bayes factor (3.8)
will be evaluated as

ADIMY _ G (_Q
Bl = 26 e~ % jremy, (39)

2 2
Sls | 5% . . .
L ——5 ) that is the square of Fisher's Z test statistic

2

(value Q'=0 giving maximum support to M), and X (k) and s are respective unbiased

where @ =( X" (1)— 7(‘(2»2/( +

estimates of g, and o obtained from the imaginary training sample. Suppose we denote A
by

exp{—%},
then A is a function of Z test statistic for testing the null hypothesis that M, is true(cf.
Hogg and Tanis 1993). The Bayes factor (3.9) can be expressed in terms of A, so that

DI M) _,C 2
BD| M) =2 G I5/4}°A. (310

Since the statistic A takes a value 0<A<1, the condition (ii) of Definition 3.1 leads to the
value of A to be one (i.e. Q—co) achieving maximum support to M,. Furthermore, if we

set the Bayes factor (3.9) (arising from this imaginary experiment) equal to one, we can
immediately deduce, from Definition 3.1, that
c
G,

=27'(5/4} 2. (3.11)
Theorem 3.1. If »n; and =, are large, the approximate Bayes factor B}, for comparing M,
with M,, obtained from the imaginary training sample method under the priors (3.4) and (3.5),

is reduces to a function of Fisher's Z-test statistic (cf. Hogg and Tanis 1993)

2]

k

B{z=2_”21*{5/4}_2exp{—-z72}k11 [{ } ( nnk 1 )1/4‘ (3.12)
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( gf(l)_: 2)/( (2))1/2 , s? and s are the usual unbiased estimators of o and o% (the
S1/ny T S/ Ny

two population variances).

where Z=

Proof. Substituting C,/C; of (3.11) into (3.8), we have the result.
This yields the following Bayes criterion for testing M, versus M,.
Corollary 3.1. The posterior probability of M, is given by

/
T By

A1 D)= m+mBl

(3.13)

where =x; denotes the prior probability of M;, i=1,2.

Proof. Under the prior probabilities, Bayes theorem gives
P(M, | D) = KD | M), | | SAD| M),

Since Bl,=P(D|M,)/PD|M,), expressing P(M, | D) in terms of Bj,, we have the result.

If P(M,| D), is larger than 1/2, then we choose M, as a model best supported by the

data, D. Otherwise, we choose M,, and in case P(M, | D)=1/2, we may randomly choose one

of the two model. Note that when m,=m=1/2, P(M,|D)> 1/2 is equivalent to Bl > 1.

4. Numerical Study

The Bayes factor is a summary of the evidence provided by the data in favor of M; as
opposed to M,. Jeffreys(1961) has proposed, for nested models, M, C M,, the following order
of magnitude interpretations of Bp(see Kass and Raftery(1995) for the other order of

magnitude).
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Range viden

By > 1 evidence supports M,

1> Bp > 10717 very slight evidence against M,

10712y By > 107! moderate evidence against M,

107> Bp > 1072 strong to very strong evidence against M,
1072 > By decisive evidence against M,

We shall summarize the p-values of classical two-tailed tests for H, that M; is true
corresponding to critical values of the Bayes factor (BL) in (3.12) for some particular

combinations of #,, n, and c¢=s%/(s*+s%). The standard tests considered here are those

using Fisher's Z test statistic
Z=(X()=X@)/ (s}/m+s3/n)"* ~ NO,D,
and Welch’s ¢ test statistic(cf. Hogg and Tanis 1993)
Z= (X=X [ (/m+sn)"* ~ tq,
where [7] is the greatest integer part of
r={(m—D+1— ¥ (n,—1)} "' and c=s}/(s}+sd).

TABLE 1. p-values of Fisher's Z Test(F) and Welch’s t Test(W) with Given c.

Bl Bi,
n Test 1 107% 01 001 Test 1 107% 01 001
("2:‘7!1)

5 F 408 084 021 001 10 F 247 056 015 .001
We=.1) 446 146 071 .026 We=.1) 272 083 033 .008
Wc=.7) 435 .128 055 .016 We=.7) 264 075 027 .005

15 F 188 045 012 001 20 F 155  .037 010 .001
We=.1) .205 .060 022 .004 Wce=.1) .169 049 017 .003
We=.7) 200 .05 019 .003 We=.7) 165 045 015 .002

5 F 087 022 006 000 100 F 057 015 .004 .000
We=.1) 092 026 .008 .001 We=.1) 060 .016 .005 .000

We=.7) 090 025 007 .001 Wce=.7) 059 016 .004 .000
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By Bi
ny Test 1 107% 01 001 my Test 1 107" 01 001

(ny,=2%mn,)

5 F 314068 017 .001 10 F JA95 046 012 .001
Wc=.1) 336 .09 .037 .009 We=.1) 208 058 .020 .003
Wce=.7) 345 108 .047 .013 Wce=.7) 212 062 .023 .004

15 F 50 036 010 .001 20 F 124 031 .008 .000
W= .1) 158 044 014 .00l Wce=.1 131 036 .011 .001
We=.7) 161 046 015 .002 We=.7) 133 .037 .012 .00l

0 F 071 018 005 000 100 046 012 003 .000
Wce=.1) .073 .020 006 .000 Wc=.1) .047 013 .003 .000
Wce=.7) 074 020 006 .000 Wc=.7) 048 013 .004 .000

From Table 1, the correspondence between Bayes factor and p values of the classical test
statistics may be roughly summarized as follows. For moderate values of total sample size

(n,=15,20), the critical values 1072, 107Y, and 10°° of the Bayes factor correspond to
6.0—3.1, 4.9—1.0 and 0.4—0.0 percent values of the classical test statistics. In all cases,
for large experiments (7, =50,100), evidence at a very high significance level is required for

the Bayes factor to favor strongly the more complex hypothesis. This phenomenon is related
to the "Lindley paradox” so that the result of classical and Bayesian analyses may differ more
and more as n,—oo. For fixed Z, the phenomenon is easily seen from the fact that

Stirling's formula asymptotically leads to

2 ne+1/2 V4
Bl, « eXD{—"ZZ*}}jl(——*”Z ) .

and hence Bl, — . Consequently P(M,|D) is of order 1/#"?, n= Min{N,N,} and thus
P(M,| Dy — 1. For small experiments (n,=5,10), the critical values 1072, 107", and 1072

of the Bayes factor correspond to high percent values of the classical test statistics, and
hence the approximate Bayes factor in (3.12) seems to require a more delicate investigation.

5. Concluding Remarks

We have suggested an approximate Bayes test criterion for the univariate Behrens- Fisher
problem via a development of the imaginary training sample method introduced by
Spiegelhalter and Smith(1982). The development is pertaining to the comparison of
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homo/heteroscedasticity of two normal means with heteroscedastic variances. The appeal of
the method is that it provides a simple method for evaluating a value for the arbitrary
constant attached to the Bayes factor (using with improper priors) to coming at a Bayes test
criterion. It is seen that the Bayes criterion so obtained is expressed as a function of classical
test criterion. So that it is possible to compare the suggested test criterion with classical test
criteria in terms of p-value. The numerical study notes that (i) the criterion generally gives
more conservative critical value than the classical tests do for moderate and large sample
sizes and (ii) the criterion provides an automatic assessment of “significance”, taking into the
size and structure of the experiment. Thus this study can be taken as an another illustration
of the result by Berger and Sellke (1987).

Suggested Bayes factor for the comparison of homo/heteroscedasticity of two normal means
can be extended to the case of the multivariate Behrens-Fisher problem. A study pertaining to
this extension is not unimportant, and hence it is left as a future study of interest.

Appendix : Proof of Lemma 3.1

Let respective joint density and prior density be (3.2) and (3.4). Then it follows from the
definition of the marginal likelihood that

HD|M)=C, f(27T) — O+ m+ D2 Ali[‘{ok—(nﬁS/Z)}_

x exp{—% g“{ V. + n,,(?(k)—ﬂ)z}/ozk}‘li[ldoi du

Integrate the integrand with respect to o s using the inverse chi-squared normalizing

constants (cf. Lee 1988). This gives
le(27r) = (et g+ D2 Alil‘{AkV[("‘H/Z)/Z(l"' W —(m+1/2)/2}d#' 6.1)
where W= n,(X(B) — w)?/ V,.

Note that, under M, pli—q}ci(k)=,u, p}i_rgoVk/nk=di and Wk=Op<—;:); that is

p lim »,W,= a constant. Hence, as =n,—c, W, approaches zero, in probability, so that
]

p lim (1+ W) =1. (6.2)

Now consider (1+ W;)*?, where v;=1n,—1.
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Ve

A+ W) = exp{ 5

log(1+ Wk)].

W2 W3
- eof 2w ]

i3

= exp{—;k‘ Wk}'exp{— 4 I/I/}f%——l—/i

g VVk3+...}_

It is easy to see that since W,=0,n;'), Wi’ =0,(n; ‘). Therefore,

(1+ W) 2 = exp{—g’i m]'[1+0,,(nik)]. 6.3)

Substituting (6.2) and (6.3) into (6.1), assuming #,’'s are large, and neglecting terms of

order n;' in probability, gives approximately

C(2m) A<m+nzq)/zﬁljl{dkvk—u.ﬂ/z)/z}fJj\exp{_ Z\% m}dp

- ¢,(2n) (it 12 eXD{—g}g{AkV[("mwz}fﬁlj;lexD{—%(ﬂ_ﬂo)z/]]dﬂv (6.4)

where f“=§nks;2, s2= Vilve, po=KX()+(I-K)X?2), K=mn/(s]),

Q= (X(1)— X(2)?*/(s}/n,+ s3] ny).

Thus the desired marginal likelihood p(D| M;) can be found by integrating with respect to

¢ using the univariate normal normalizing constant
AD| M) = C(2m) ~ 2 ﬁljl{de[("‘H/Z)/z}X]_Uzexp{—g}[l+0,)("%)], 65)

where n= Min{n,, n,}. Now

oV Ji{(nk(nk—l))_‘/4 V/em}AIjl(l‘*' Uy ~V4, (6.6)

where Ul=(sf/nl)”z(sg/nz)7‘(sf/n1)”2 and U, = (s3/n) V(2 /my) "N (3 mp) V2.
Note that the values of U, and U, approach zero in probability, as #n, and #n, approach

infinity, ie.
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p lim(1+ Uy =1, k=1,2, 6.7)

where n= Min{n,, n,}. Substituting the results (6.6) and (6.7) (neglecting terms of order n!

in probability) into (6.5) yields DI M,) of Lemma 3.1.
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