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Hierarchical and Empirical Bayes Estimators of Gamma
Parameter under Entropy Loss?l

Younshik Chung?
Abstract

Let be Xi,--,X, , p=2 independent random variables, where each X, has a
gamma distribution with %; and 8, The problem is to simultaneously estimate p

gamma parameters §; and 0,-_1 under entropy loss where the parameters are believed

priori. Hierarchical Bayes(HB) and empirical Bayes(EB) estimators are investigated.
And a preference of HB estimator over EB estimator is shown using Gibbs
sampler(Gelfand and Smith, 1990). Finally, computer simulation is studied to compute
the risk percentage improvements of the HB estimator and the estimator of Dey,

Ghosh and Srinivasan(1987) compared to UMVUE estimator of § -1

1. Introduction

This paper is devoted to hierarchical and empirical Bayesian estimation of the parameters of

p independent gamma distributions under entropy loss. Suppose that X= (X, ", X ,) where

X, -, X, are p independent random variables, X; having probability density function which

is defined as

Filx) = F(x:10,) = exp(— 0 )% 0" | T(k:), x>0 (LD
which is denoted by I'(k;, 8,), where ;> 0 unknown and k;> 0 known. The improved estim
ation of scale parameters from exponential families has also been studied recently. The major
results in this direction are obtained by Hudson(1978), Berger(1980) and Ghosh, Hwang and T
sui(1984). Das Gupta(1986) obtained improved estimators of gamma scale parameters without a
variational argument by proposing an estimator which is a function of the geometric mean. In
this paper, the loss is considered as the entropy distance (or the Kullback-Leibler information

number) between two distributions of p independent gamma random variables. Assume that

ks in (1.1) are known. Then the loss is given as
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L(6,8) = E,|log
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=
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=
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= 2kl 80, ' — (86,7 H—1]

(1.2)

where In denotes the natural logarithm. The loss (1.2) was first introduced in James and
Stein(1961) for estimation of the variance-covariance matrix of a multinormal distribution. Dey
and Chung(1991) and Chung and Dey(1994) investigated this loss(1.2) for estimation of
parameters from truncated power series and power series distribution, respectively. Chung,
Kim and Dey(1994) considered the weighted entropy loss for estimation of Poisson means.

Since mean and the variance of the gamma distribution are the functions of -L we are

g;’
interested in estimation of —é =(4611‘,--~,T01;). So we consider the loss L(6 7%, 8) for
estimating 67! as

L7, 8)= 2 k(86— n(8:0) D). (1.3)
Under the loss (1.3), the best invariant estimator of 6 ' is MNX)= (—)/:1*1, e i};ﬂ_ ). Tt is

also easy to check that 8°(X) is the minimum variance unbiased estimator(MVUE) of L
And the best invariant UMVUE estimator of @ under the loss (1.2) is given by

+ _ kl—'l .. kﬂ-l
51X = (gt B

8Y(X) are admissible for @ ! and @ , respectively. Let R(O™Lo(XN=EXLO!, 8(X))
denote the risk function of a decision rule &(X). Usually, 8°(X) is R-better than &(X) if
RO, 8"(X) <R(67,8(X)) for all values of & where strict inequality holds for some

). For, p=1 it follows from Brown(1966) that ¢°(X) and

values of 6. Furthermore, one can say that 8" is an improved estimator over &. These
losses in (1.2) and (1.3) are considered in Dey, Ghosh and Srinivasan(1987) for simultaneous

estimation of p independent gamma scale parameters or their reciprocals. For p=3, the

improved estimator 8°(X) = (6P (X), -, SE(X )) is componentwisely given as

D . X _ ki _

800 = (1 o b+ S(nX, a,»)) (1.4)
where S= 21( InX;—a) and b> 36(p—2)° /25K, 0< AS6(p—2)/5£  with

k = max(k, -, k,). Although the above estimator 8P(X) improves upon the MVUE
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60()(), they have no Bayesian interpretation. So in this paper hierarchical and empirical
Bayes approach are considered.

In section 2, where g in (24) and 7 in (215) are known or unknown, hierarchical
Bayes(HB) and empirical Bayes(EB) estimators are investigated. Briefly, the hierarchical Bayes
approach is a purely Bayesian approach using a hierarchical prior and the empirical Bayes
approach estimates the unknown hyperparameter of the first stage prior (2.5) from the
marginal density using maximum likelihood method.

If g or 7 is unknown, the purely HB approach is avoided in this situation due to
computational difficulty; however, a combination EB and HB approach is employed. In section
3, comparisons of two approaches are made. Then Gibbs sampler is applied to compute the

HB estimator. Finally, in section 4, comparisons of the HB and the estimator 8°(X) in (1.4)

of Dey et al.(1987) with the MVUE of & ~1 are made according to computer simulation.

2. HB and EB estimators

Our focus is a fully Bayesian parametric approach. Assume that 6,,---,8, are believed to
be exchangeable. This prior information is represented by letting 6, -, 8, a random sample

from the conjugate prior

— 1 a—1 818
g(bila, B) _—Ha)/s’" 07 e, a, B0 (2.1)

with hyperparameters « and £

Then, the prior density of 8 = (6,,:-,8,) is given by

oie. = M1 { ey

So, the posterior density of @ given X = (X, ---,X,), @ and B is

_ 6
Wﬂeﬂ} 2.2)

1 ) a+ k;
(2.3)

—- Ly
atk; o (x;+ ﬂ)t‘):]

2(01X,a, =11

=1

which is a product of p independent gamma distributions with a + k; and x; + “1“, denoted

B
by I(a+ k;, x,«+—}))), i=1,-,p.
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2.1. Estimating 6 “'under loss (1.3).

It will be shown useful in sections 2.1.1 and 2.1.2 to reparameterize (o, 8) into (7, z)
where ¥ and g are given respectively by

1 - 1
="ar *7 E(6}a,p)

1
2B (2.4)

Remark that ug= S S— is the best prior estimate of 49,-_1 in the sense that it
E(6;la,B)

minimizes E(L(8 7!, dla, B). It will be of interest to consider the case when g is known or
unknown. If g is known, the hierarchical model is as follow :

Oily,u~I(p, 7),  r~m(y) (2.5)
where the second stage prior 7y is noninformative. On the other hand, if gz is unknown, the
hierarchical model is as above (2.5) with replacement

(e, 7)~m(p, 7) (2.6)

where 75 is now a noninformative prior for hyperparameters g« and 7.

2.1.1. ¢ is known.

By reparametrization in (2.4), since ;t'—““l— replace % by ua. Then the posterior

al’
distribution of 8, denoted by #( 81X, a, 1), is a product of p independent gamma distributions
with @+ k&; and X;+ au¢. Under the assumed model and given loss in (1.3), the estimate at

. . .. -1 P o~ - . .
the first stage of Bayesian analysis is D =( 6, l, -, 8, l) given componentwisely as
- kg X,
6,7 = - ' +—2 @.7)

E0;\X,a, 1) a+k K

Suppose a noninformative prior for 8 is #(8)= I‘?Il 61_1. This prior can be obtained from
bt

I"(a,—}g) by letting @ —0 and B— 0. Also by these limits, @ —0 implies &; @ — -
. . .. s X X .. . ‘
If a noninformative prior is assumed, ¢ (X):(T’...’v_k ) is the derived estimator of
1 »

6! which is also UMUVE &% X). On the other hand, precise prior beliefs can be modelled
by fixing u and letting a — o©, and then 5\,-—1 — u. It is desirable to consider estimating

8! by a convex combination of 8~ and . The Bayes estimate (2.7) is rewritten as
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ki = k;
B, =1 — Xi+ (U= )u (2.8)
- + k,‘ - + k,‘
4 4
— X; -
where X; = N and 7y = —(lz . To derive HB estimator for 6 ! , note that marginally

Xy, +,X, are independent with X; having the density

o Lysht
Rkt =X ()

m(Xily, W= [ AX,10)x(81y, u) db; = —. 29
MDY X+ -2) "
Under the second stage prior with my(7),
HB _ 1 _ 1 _ 1
ST RO T EEG XD T ] 1ig @10
E, —L“__L
X,"f‘ y M

where E,; denotes the expectation taken over the posterior z{ 7|X,u) of y given X and g,
and (7 |X, ) o< [ ﬂm(X,-lr,/z)]ﬂz(r).

To derive EB estimator for 9_1, it is necessary to maximize m{(X |y, p) = ﬂlm(X,- l7, #).
L

Let L(») = Inm(X |y, ). Then it follows that

fa 1
Lo F_(ILJ_ifﬁ+pln£+ b 1’”17)
Y = 1, e -y
I 7+k’) I 7) (2.11)
L1
— ﬁlln(X,*“/i)—#_“—L
r X

where I' (7) denotes f x"e " logxdx. After computing the optimal 7,

853 = —— X, +
- + k;

ki

1_
Loy
7

U (2.12)

2.1.2. p is unknown.

Recall that the first stage Bayesian analysis under the loss (1.3) yields the estimate (2.7).
When p is unknown, to derive an HB estimator, it is first necessary to assign a prior

distribution to the hyperparameter # and to compute E(x|X,7). However, due to the
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complicated form of m(X |y, 1), this expectation can be only calculated numerically for fixed
X and 7 Thus the HB procedure would yield an estimator requiring the evaluation of two
dimentional integrals. One alternative to the hierarchical Bayes approach is to estimate from
data. Following the idea of ML-II prior (Berger, 1985), ¢ let L(g) = Inm(X |y, ¢). Then,

rt
oL _ 1 r’ o1 1
ou 2\ Lt L) Pt =)ok (213)
' 4

After computing the optimal g, then it follows from (2.8) that a combination of empirical

Bayes and hierarchical Bayes estimator for @€' is given componentwisely  as
8F1(X) = 7: X, + (1— 7) & where 7, = k,-E[(—ly+k1~) —IIX] and the above expectation
is taken with respect to the posterior distribution of ¥ given by n{y|X) o ;[jl m(X;ly) mo(y)
and m(X;ly) is in (29) with x replaced by . An empirical Bayes estimator for 8 ! is
derived by maximizing m (X|y)= I:[lm(X :17). After computing the optimal 7, it follows

from (2.8) that an EB estimator for 8 ! is given by 8%B(X) defined componentwisely as
ki —

2.2. Estimating @4 under loss (1.2)

It will be shown useful in sections 2.2.1 and 2.2.2 to reparameterize (e, 8) into

(A, 7) where A and 7 are given respectively by

-1 -1
A= 7= H6 e (a— 1A (2.14)

assuming @ > 1. Remark that g= is the best prior estimate of @; in the sense

EX( B,~_1lla, B
that it minimizes E(L(8, 8)]a, B). It will be of interest to consider the case when 7 is
known and unknown. If 7 is known, the hierarchical model is as follow:

8,14, n~N2A), A~ m(d) (2.15)
where the second stage prior my is noninformative. On the other hand, if 7 is unknown, the
hierarchical model is as above (2.16) with replacement

(7,A) ~ m(n,R) (2.16)

where 75 is now a noninformative prior for hyperparameters # and A .
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22.1. pis known.

1

By reparametrization in (2.15), since 7 = (a— 1) 8, replace ‘*B‘ by a—1

. Then the posterior

distribution of &, denoted by m(8lX,a,7), is a product of p independent gamma

distributions with @ + &, and X;+ a;l . Under the assumed model and given loss in (1.2),

the estimate at the first stage of Bayesian analysis is 6= (64,,-, 8, given
componentwisely as

> _ 1 _ ki X; a—1 17-1
0i= E(67 "X, a, p) =[ a—1+k, k + a—1+k; 7;] :

Suppose a noninformative prior () for & is propotion to constant. This prior can be

(2.17)

obtained from I’ (a,_};) by letting @ —1, and B —co. Also by these limits, @ — 1 implies

—~ 7

4, — X = 87 (X;). On the other hand, precise prior beliefs can be modelled by fixing 7

and letting @ — <o, and then /0\, — 7 It is desirable to consider estimating 6 by inverse of a

convex combination of 8~ and 7. The Bayes estimate (2.18) is rewritten as

— k; — k; _
o=l — X+ (- )—}]] 1 (2.18)
FREL PR
- X ) . .
where X;= N and 4 = a—1 . Note that marginally X, ---, X, are independent with

X; having the density

Mkt S+ DX}

m(X; 4, 1) = [ A(X;16)7(6;14,do,= . (219

1 e 1\ &*73
R +1D(Ap (Xi+—-)

A An
Under the second stage prior with my(A),

HB( 3 — 1 — 1 — 1

SO R X T BB X [t 220
1

kit

where E| denotes the expectation taken over the posterior 7(A1X,7) of A given X and 7,

and 7(A1X, ) o< [ [ m(X,10, DIz

To derive EB estimator for 8, it is necessary to maximize m(Xl|y,p)= Iallm(X;l/l, 7)
L

Let L(A) = Inm(X]|A, ). Then it follows that
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‘ 1 1
oL _ ——lﬁ:l F(k,-+/1+l)_F(A+l)
2 =
o4 AL I R RS VN AC S 291
_ o1 21 A
logd7 (Xi+ )+ (1+ D)+ ket 3 +1) 1+MX,~]
where I' (1) denotes f x*e ¥ logx dx. After computing the optimal A,
I k; !
SEEX) = | X [1—— L 2.22)
—/;“*’k, Ty‘*‘k, 4

2.2.2. 7 1s unknown.

Recall that the first stage Bayesian analysis under the loss (1.2) yields the estimate (2.18).
When 7 is unknown, to derive an HB estimator, it is first necessary to assign a prior
distribution to the hyperparameter 7 and to compute FE(7|X,A). However, due to the
complicated form of m(XI|A, 7), this expectation can be only calculated numerically for fixed
X and A. Thus the HB procedure would yield an estimator requiring the evaluation of two
dimentional integrals. One alternative to the hierarchical Bayes approach is to estimate 7
from data. Following the idea of ML-II prior (Berger, 1985), let L(7) = Inm(XI|A,7).
Then,

- gl[(ki+—}l+l)m~(%+l)—ln].

After computing the optimal 9, it then follows from (2.19) that a combination of empirical

Bayes and hierarchical Bayes estimator for 8 is given componentwisely as

DAY
1Tk

EH _
57 X)=E X; + 74

and the above expectation is taken with respect to the posterior

distribution of ¥ given by x(A]X) o Ijlm(X,-M)rrz(/l) and m(X;|A) is in (2.20) with 7
replaced by 7. An empirical Bayes estimator for 8 is derived by maximizing
m(X|A)= ﬂlm(X,- |A). After computing the optimal A, it follows from (2.19) that an EB

estimator for @ is given by & *2(X) defined componentwisely as
1

3 I 3

Xorwh | L, MU

i . S Atk
D A

-1
L.
7

6,’EH( X) —
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3. Comparison of HB and EB.
In this section, we deal with the comparison of HB and EB when pu and 7 are known.

3.1. The loss (1.3)

The ith component shrinkage of &8 ™(X) and §%%(X) away from the MVUE SUX)= X,

toward the best prior estimate u are respectively given by

80 - X, 8PP0 - X,
— d ————— f =1, p. 3.1
X an - X, or =1 b (3.1)
Assume that the noninformative prior is (7)) = 1 for 0<y<1. When computing
-1
HB 1 _if +ki . .
d; (X):Tm— =| E, _Xi+—1—,¢ in (2.10) where E, denotes the expectation
oy

taken over the  posterior (71X, ) of y  given X and u, and
(71X, @) o< [ inIl m(Xly, 1)]r,(7), it is impossible to find its analytic form. So, we use the
approxmation methods, such as Laplace approximation and Gibbs sampler(Gelfand and Smith,
1990) etc. But in Laplace approximation, the mode of 7 in [ ljlm(X,- ty, 1)1my(y) is needed
and its method is very complicated. Therefore we use Gibbs sampler to compute

1 -1

g,
SFB(X)= | E, T . In this case, we need the univariate full conditional
X 1-+—§,u

distribution(FCD) as follows:

Fori=1,---,p,
ket -1
[eiIY)xr#] & 01’ " 4 exp _(Xx+_§t;)9; (32)
and
2
()7 Lyg-1
[716,x,u) o« — 27— 11 6,7 exp((— 4+ X)8). (3.3)
n—)" =1 v
7

When sampling from each FCD, since [8;ly, x, #] is gamma distribution, its sampling is
easy. But the exact form of [7]|8, x, #] is very complicated and so we use Metropolis

algorithm to sample from [716, x,#]. In order to compute &°2(X), the optimal 7 in the
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equation (2.11) is needed and so the Newton-Raphson method is used.

Table 1. Shrinkage of HB and EB for £=3 under (1.3)

“_'X dl 8 EB 8 HB

0.01 0.02 0.05 3.84 0.55330 0.40153
0.1 05 1.5 1.13 0.00903 0.39927
0.3 0.6 16 0.67 0.00420 0.40076
06 0.8 12 0.31 0.00062 0.40269
200 200 201 5.30 0.41131 0.39173

10 10 10.5 2.32 0.45274 0.39173

5 5 55 1.64 0.34755 0.39713
0.5 2 5 0.69 0.00860 0.39173
0.8 1.2 1.3 0.22 0.00800 0.39863

Table 2. Shrinkage of HB and EB for .= 10 under (1.3)

_)Zv dl S EB 8 HB

0.1 0.2 15 1.44 0.41390 0.16192
0.1 0.5 1.5 113 0.36515 0.16192
0.4 06 0.2 071 0.00548 0.16192
0.6 0.8 15 0.38 0.00771 0.16192
0.6 0.8 1.2 0.31 0.00575 0.16192
0.8 0.3 0.9 0.18 0.00630 0.16192

5 5 55 1.64 0.23200 0.16192
0.5 1.5 6 0.96 0.44700 0.16192
0.5 2 2 0.69 0.00988 0.16192
1.2 1.5 2 0.43 0.00503 0.16540
0.8 1.2 1.3 0.22 0.00870 0.16192

In tables 1 and 2, the simultaneous estimation of 8! is considered for p=3 and
ki = ky= ks = k . These tables 1 and 2 show the shrinkage of HB and EB estimators
towards ¢ = 1 based on sample means of dimension p=3 for £#=3 and 10 and the loss

1
p

X = (Yl,---,z) to pu. For each =x, the table is divided into two categories. An

(1.3). The measure d;= 21“08?:" log #| is used to measure an average distance from

observation X is in the first categorywhen—ll) 21 logi’?,—( logr and X is in the second
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category when 1 log?,- > logp. It appears that the shrinkage of &Z8(X) approaches 0

p 1=
faster than that of BHB(X) as d; becomes small. These observations suggest the preference

of 8"B8(X) over 8F5(X).

3.2. The loss(1.2)

The th component shrinkage of &72(X) and 6F8(X) away from the MVUE

ki—1 . . . .
8,*(X)= IX toward the best prior estimate 7 are respectively given by
1

k,‘_‘ k,’_
58— £ L 5580 — il
X d Xi o =1, (34)
B ki1 an - ki—1 or =1, p. .
X; X,
Assume that the noninformative prior is myp=1 for 0 <y<1 When computing
HB _ 1 _ 1 . .
80, (X)= Eo X7 . X, ¥ Ag7 D (2.21) where E) denotes the expectation taken
L 1
ki+ 3

over the posterior (A|X,7) of A given X and 7, and 7(A1X, p) =< [ ]:Ilm(X,-M , 7)) mo(A),
it is impossible to find its analytic form. Alsoc we use Gibbs sampler to compute

é‘,-H B x) = ——‘1—* . In this case, we need the wunivariate full conditional
E X+ Ay
! 1
ki+—
|

distribution(FCD) as follows:

For 1 =1, -, p,

pt L
[0, 14,7 07" *exp(= (Xi+ ) 6,) 35)

and

1 ’ K 1
[41617+,0,, X, 0] o= e [ | (CARCTCICS SO V) R
(An) * T +1D
When sampling from each FCD, since [6;|4, x, 7] is gamma distribution, its sampling is
easy. But the exact form of [A]8,x,7] is very complicated and so we use Metropolis

algorithm to sample from [A]6,x,7]. Then the estimate of &;2(X) can be expressed as
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1
‘L ﬁ‘ X,+/1,7]
N&T, L1
) /{j

. Next to compute & E B(X), we use the Newton-Raphson method to find

the optimal 7 in the equation (2.22).

In tables 3 and 4, the simultaneous estimation of ! is considered for p=3 and

ky = ky = ky = k. These tables indicate the shrinkage of HB and EB estimators towards

7 = 10 based on sample means of dimension p= 3 for 2= 3 and 10 and the loss (1.2).

k)}-‘l — logn| is used to measurean average distance from
1

The measure dy = —11> gl log

UMVUE k—;(i to 7 In this case, we only consider the category when

—é Z:llog—k)%L ¢ log7. It appears that the shrinkage of &%2(X) approaches O faster than

that of 87(X) as d, becomes large. These observations suggest the preference of 8 HB(X)

over 8EB(X).

Table 3. Shrinkage of HB and EB for k=3 under (1.2)

—)'Z dg S EB ) HB

0.1 0.1 01 0.4 1 1
0.2 0.2 0.3 1.2 0.7690 0.7180
06 0.65 0.7 22 0.2200 0.3970
0.8 0.8 1 25 0.1460 0.3260
1 1 15 2.7 0.1100 0.2790
15 15 105 5.4 0.0060 0.0029
100 100 100 7.3 0.0001 0.0006
200 200 201 8.0 0.0001 0.0003
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Table 4. Shrinkage of HB and EB for unde 2 = 10 under (1.2)

fX dZ 8 EB 8 HB

0.1 0.1 0.1 0.10 1 0.9910
0.2 0.2 0.3 0.19 0.5090 0.3930
0.6 0.65 0.7 1.97 0.0620 0.1590
0.8 0.8 1 2.25 0.0430 0.1230
1 1 15 2.54 0.0330 0.1010
15 15 10.5 499 0.0020 0.0091
100 100 100 7.00 0.0003 0.0004
200 200 201 7.00 0.00001 0.0002

4. Computer Simulation.

Assume that all k2, =1 in (1.1) and (1.2) and that g is known. In this section, we

compute the percentage risk improvement of the proposed estimators 8(X) with 8%(X) = X

under the loss (1.3). The percentage of savings in risk using &(X) are compared to 8%(X)
using the formula

R(8.8°(X)) — R(8.8(X))
R(6.8°00) *100-

The estimator 6°(X) of Dey et al.(1987) is given componentwisely by
82(x) = X, (1- 2L 1n(x,)) (41)

where S = lenX,- and b= 1.45(p—2)? and #(s) = 3(p—2)/5. Estimates of the

parameters are calculated according to the estimators &72(X) and 6°(X) given by (2.10)
and (4.1), respectively. The next step is repeated 3000 times and the risks as the average of

each loss are calculated for the different values of # in (2.5) and the different ranges of 4.

In table 5 and table 6, it is observed that the improvements are always positive and
0™(X) and 6°(X) dominate &°(X) in terms of risk according to computer simulation. Also
we observe that the percentage improvement decreases as the magnitudes of the ; increase.
These tables indicate that the percentage risk improvement of & HB(X) i1s better than that of

8°(X) for variou values of .
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Table 5. Percentage Risk Improvements for Range of 8 :(0,1)’

p=23 p=25 p=10

u 60 aHB 6D 8HB 3D 8HB

1 0.03 72 0.01 72 0.06 73

12 0.03 72 0.01 72 0.06 73

14 0.03 71 0.02 72 0.05 74

16 0.02 72 0.01 74 0.05 %

1.8 0.02 73 0.01 72 0.06 75

20 0.02 72 0.01 72 1 006 71 |

Table 6. Percentage Risk Improvements for Range of &: (0,2]”

p=3 p=>5 p=10

[ 6D 8HB 6D 6HB 8D 5”8

1 03 60.2 0.07 61 0.03 62

1.2 0.3 60.7 0.07 61 0.03 63

14 03 60.4 0.08 62 0.04 62

16 0.3 60.7 0.05 62 0.04 58

18 03 60.5 0.05 62 0.04 65

2.0 03 60.5 0.07 62 0.03 58 |
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