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On Doubly Stochastically Perturbed Dynamical Systems?V
Oesook Lee?

Abstract

We consider a doubly stochastically perturbed dynamical system {X,} generated

by X,=T(X,-1)+ W, where I', is a Markov chain of random functions and W,
is 1.i.d. random elements. Sufficient conditions for stationarity and geometric ergodicity
of X, are obtained by considering asymptotic behaviours of the associated Markov
chain. Ergodic theorem and functional central limit theorem are proved.

1. Introduction

Consider the process {X,} given by
X1 =T pe (X)) + Wiy (n=0), (L.
where {I',} is a Markov chain of nonlinear random functions , {W,} is a sequence of
independent identically distributed random variables and {I",} and {W,} are independent.

An extensive discussion for the processes {X,} under I, (X,)=A,+; X, and
(A,, W, are assumed to be iid. is given in Vervaat(1979) and Feigin and Tweedie(1985). In
Brandit(1986), 1.i.d. assumption is dropped and existence of a stationary solution of (1.1) is
proved under the condition that (A,W,) is a stationary ergodic process and some mild
additional assumptions.

On the other hand, the case that I',, n=1 are nonlinear random functions which is so

called IFS(iterated random function systems) has been considered. Barnsley and Demko{(1985),
Bhattacharya and Lee(1988), and Letac(1986) investigated the ergodicity of the process and
ergodic theorem when {I7,} is iid.. Elton(1990) studied the case of stationary sequence,

Stenflo(1996) finite semi-Markov  process with discrete time. Also a certain doubly
stochastic time series model is considered by Meyn and Guo(1993).

In this paper, we consider the process {X,} defined by (1.1) when {I',} is a homogeneous

Markov chain. We find sufficient conditions, under which {X,} is geometrically ergodic and
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functional central limit theorem holds.

The terminologies and concepts mentioned in this paper such as aperiodic, irreducible, small
set, stationarity, (geometric) ergodicity etc. can be found in books on Markov chains (e.g.
Nummelin(1984), Meyn and Tweedie(1993)).

Following two propositions - give useful tools to determine the geometric ergodicity of the
processes.

Proposition 1.1 ( Tweedie(1983) ) Let {X,} be an aperiodic, irreducible Markov chain.

Suppose that there exist a small set C, a nonnegative measurable function g positive

constants ¢, ¢; and <1 such that

Elg( X s )X, =x}<pg(x)—c, x=C°, (1.2)
and
Elg(X X, =x1<cy, x=C. (1.3)

Then {X,} is geometrically ergodic.

Above proposition is the so called Tweedie’s drift criterion for the geometric ergodicity of

Markov chains and the function g is called the (stochastic) Lyapunov function.

Proposition 1.2  (Tjostheim(1990) ) If there exists a positive integer my such that

{X am,)} is geometrically ergodic, then {X,} is geometrically ergodic.

Combining above two propositions produce the my-step criteria to determine the

geometric ergodicity of Markov chains.

2. Main Results

Let C(R”, R")be the space of all continuous functions endowed with the compact-open
topology and let I' be a compact subset of C(R” R™). I’ inherits its topology from
C(R",R™. Let B(I ) be the Borel o-field of I" and let B(R") be the Borel o-field of
R". Note that C(R", R") is a complete separable metric space.

Let us , for a function f€ C(R", R"), define a generalized norm

X
1711 = sup 4, = =

Here || - || denotes the usual metric on R* (k=1).

Let {I',}5-; be a homogeneous Markov chain with I' as its state space and {W,}%=1 be
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a sequence of independent and identically distributed random elements with common
distribution @ and ElWj|<c. Assume {I',} and {W,} are independent.

In this paper, we consider the stochastic process {X,} given by

XO. Xn+l=Fn+l(Xn)+ Wn+1 (nZO). (21)

X, derived by (2.1) is not a Markov chain. In order to study the asymptotic properties of
{X,}, it is convenient to consider the associated Markov chain ®,=(I",,X,), >0 with

state space I'X R” and homogeneous transition probability function

b2, 0= [ [Ilg g(x)+ sy, d)QXds),

where CeB(I) X B(R"), and p is the transition probability function for {I",}.

Lemma 2,1 If {I,} is weak Feller, i.e. for any real-valued bounded uniformly continuous
function f, ff(g)p( - ,dg) is continuous, then so is {@,}.

Proof. Suppose H: ' R" — R is a bounded and uniformly continuous function and

(Yn,x,)—(7,x) as n — oo, Then

|| [ He.g(xn+ 907, de)d9) — [ [ Hig,e() +)p(r,de)d(s)]
< [ [1H(g. 8020+ — H(g, 2(x) + )t 7., d2)dQs)

+ [1 [ Hg.gx)+ 907, de) — [ Hg,8(x)+ (7, de)ldes)
— O,

as n — o by uniform continuity of H and compactness of I

Next lemma gives sufficient condition which guarantees that every compact set is a small
set.

Lemma 2.2 If a Markov chain {®,} is aperiodic, ¢-irreducible Feller chain such that

supp ¢ has nonempty interior, then every compact set is small.
Proof. See theorem 6.25(p.134) in Meyn and Tweedie(1993).

For simplicity of the notation, we define
F,(x)=T,(x)+ W,.
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We make the following assumptions:
(A1) {I',} is aperiodic and ¢-irreducible Feller chain such that supp ¢ has nonempty
interior.
(A2) The distribution of W, is absolutely continuous with respect to the Lebesgue
measure A and has a density function ¢ which is positive a.e.( A).
(A3) There exist x; in R”", constants b<{c0, p<{l, and positive integer m, such that
for each initial o= (7,x),
EF - Fill<p (2.2)
and
E|F - Fi(xpl<b. (2.3)

Theorem 2.1 Assume (Al), (A2) and (A3). Then @, is geometrically ergodic with
invariant probability, say # and the distribution of X, converges in norm to the measure
exponentially fast, where

m(B) = 2({(7, 0)lxeB}),  BeB(R"). (2.4)

Proof. Under (A1) and (A2), it can be easily seen that @, is a @X A-irreducible.

Define a (stochastic) Lyapunov function »: I'<R"” — R by
o( (7, 0)) =lx—xpl + 1, (2.5)
where x; is given in (A3). Then for any =,

ELo(® (nivym) | @ pmy={(7,%)]

=E[|X(,,+1)mu—x0|+1 | anozy,Xnmozx]

Sl':[lfr(n+1)mo'"frnrnoi-l(x)_F‘(n-i—l)mo'"F‘nm0+1(xo)I
+|F(n+1>m.,"'an0+1(x0)_x0|+1 | ano‘-: Y.Xnm,,=x]

SENF tuevymy  F omg+ 1l 12— 2o ¥ EJF (at g F oy (20D F 10 +1

<plx— xgl + b+ |xol + 1.

Let for 0, K,={xe€R" | |lx—x)<r}. Then for some «¢;>0, we may choose
o, <o’ <1 and #>00 such that ‘
El[0(® (aipm )@ um, = (. 01<0'0((7,2)) — 1, (v,x)elx K,* (2.6)
Clearly, we have
EL(D (ne1ym MO nm,= (7, 001 Spr+ bt+lxgl +1<00, (7, x)e'xXK, 2.7

By lemma 2.1, @, is weak Feller and hence I'XK, is a small set by lemma 2.2.
Therefore, (2.7) together with (2.6), by applying the proposition 1.1, ensures the geometric
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ergodicity of {@ nm;}, and hence by the proposition 1.2, geometric ergodicity of {®@,} follows.

Geometric ergodicity of @, implies that the existence of 7 which is the unique invariant
probability and a constant 8, 0<8<1 such that
sup ¢ {0 3" ((7, 0,0 = (O} =0, as n—o, (y,x)elxXR™
Therefore m, defined by (2.4) is the stationary distribution for X, of (1.1) and the

distribution of X, converges in norm to &, exponentially fast.

Following is an additional assumption.
(A4)  sup 1<pmE IRl IIMiI<d< o0, for any initial 7.

Before stating the next theorem, we give a lemma which is easy to check.

Lemma 2.3 For each initial 7, E,|IF , FI<E |\

Theorem 2.2 Let conditions (Al) and (A4) hold. Suppose E |||l lIINl|<e for some

my and p<l. Then there exists a unique invariant probability = for @, such that

' (x,dy)—>n(dy), weakly x, yeI'xR".

Proof. The proof follows essentially the same line of Meyn(1983). We give the sketch of
the proof. For each e=[0,1], define a perturbed process {X,, n=0},

Xo=Xy;, Xsn=T.(X)+ W, 1+eN,,
where {N,} is a sequence of iid. MNO0,1), and {I,}, {W,} and {N,} are independent.
By theorem 2.1 and lemma 2.3, for each >0, @,=(I,,X,) is geometrically ergodic with
invariant probability, say x % from which we have as n— oo,
E 0D} [ h dr®, 2.8)
for every bounded uniformly continuous function k% on I'X R”. From assumption
E N )l - IM|I<p, we have that

eK my d
1-o
for every initial ¢;=(y,x)€I'xR" and K= E|N)|, and hence we get
lelrpo sup nZOE #0 “X”_ X: l] = ). (2.10)

E4 X, — X< (2.9)
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Moreover for any bounded uniformly continuous function f on I'XR", by applying
Chebyshev’s inequality and (2.10), we have

lim sup 20E 4, [AX,) ~ AX)]=0 (2.11)

Since 7#° is tight , there exists a sequence f{&,}, €,—0 and = such that

r—r weakly as n— . (212

Hence combining (2.8), and (2.10)-(2.12), we have
lim E ,, [A0,)]= | sar. (2.13)

This implies & is an invariant probability for @, and also « is the unique limit point of

the probabilities {7 °, €>0} and hence = is the unique invariant probability for @, .

Corollary 2.1 Suppose that {I",} is weak Feller and that (A3) holds with ng=1.

Then there exists a stationary solution of the process generated by (2.1).

Proof. In the proof of theorem 2.1, we only use the condition (A3) to get the eqn.(2.5)

and the eqn.(2.6). Therefore the conclusion follows from the compactness of 'K, and the

weak Feller property of {@,} (see Tweedie(1988)).

Theorem 2.3 Suppose that the assumptions of theorem 2.1 or theorem 2.2 hold and that

x is the unique invariant probability for @,. If the distribution of @, is =z, then for a

measurable function f: R"™—R with E|A Xl o,

L —
LS AX,~ELAX,)L.

Proof. If the distribution of @, is =, then {@,} is a stationary ergodic Markov chain and

hence by Birkhoff's ergodic theorem, for a measurable function f, E|A @;)|< o,
1 glf( 0 ) —~E[A )] (2.14)
If we take A 7,x)=Ax) , then from (2.14),

% glﬂX”)_)E[f(X())], as n— 00,

In the end of this section, we consider the functional central limit theorem for
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V(=L Bgoy- [ram, =0 215

which is essential in evaluating asymptotic efficiencies of estimators. Deriving functional
central limit theorem for Markov processes has been discussed in many papers such as Glynn
and Meyn(1996) and the references therein.

In order to state the next theorem, let for g L2(I'<xR", z), x, yeI'xXR™
Pe(x) = [e()n(x.dy), 7= [rar, 3= [ »dn(

and n denote the invariant initial probability.

Theorem 2.4 Let the hypotheses of theorem 2.1 hold with my=1 and let
(7, x))=|x— x|+ K where K is any positive constant greater than 1. Then for any
£<v, Y,(-) converges in distribution to a Brownian motion with mean O and variance

parameter ||gll3—||Pgll5, where Pg—g= f—F In particular, the functional central limit

theorem holds for every bounded measurable function f.

Proof. For given o((7y,x)), by the same arguments as those in the proof of

theorem 2.1, there exist constants 7, M{o and (<A< such that
Po(Cy, x))<Ao((7,2)) + MI ((, vy nerxK.)-

Then theorem 4.1 in Glynn and Meyn(1996) ensures that if £<v , then fe L(I'<R", )
is in the range of P—I and hence the functional central limit theorem holds for f with

mean O and variance parameter IIgilg—IIPgﬂg. Suppose f is bounded measurable with
IA<K, for some Ky<. Then by taking K=K; in o((7,x))=lx—xl+ K, we have

fZSU and therefore f holds the functional central limit theorem.
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