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Comparison of Best Invariant Estimators
with Best Unbiased Estimators

in Location—scale Families?
Byung-Yup Cho? and Seong-Kweon Ryu?®

Abstract

In order to estimate a parameter (a,87), r< N, in a distribution belonging to a
location-scale family we usually use best invariant estimator (BIE) and best unbijased
estimator (BUE). But in some conditions Ryu (1996) showed that BIE is better than
BUE. In this paper, we calculate risks of BIE and BUE in a normal and an
exponential distribution respectively and calculate a percentage risk improvement
(PRI). We find the sample size »n which make no significant differences between BIE
and BUE in a normal distribution. And we show that BIE is always significantly
better than BUE in an exponential distribution. Also, simulation in a normal
distribution is given to convince us of our result.

1. Introduction

If any probability density function (pdf) g has the property that

X|,—a Xx»,—«a x,,—a)

P | (
g x;a,p) 2" A~ g 8
where f is known and 6= (a, 8) is unknown, e R, 0, x=(x,,x5,,x,) then this

pdf is said to be belonged to a location-scale family. In order to estimate (a,87), r= N,
BIE and BUE are usually used.

For a long time, some people had found the way to get BIE of location parameter @ and

scale parameter B in a location-scale family. Pitman (1939) found BIE of @ in the conditions

that loss was L(a,8;)=(e¢—&,)% and A=1. And Pitman (1939) got BIE of B in the

2
conditions that loss was L(f,05) =(1 - _6@) and a=0. These results were respectively
2
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marginal BIE of @ and B. Lehmann (1983) presented more general marginal estimator. He
respectively calculated BIE of @ and 87, where » = N.

Prabakaran and Chandrasekar (1994) found simultaneous BIE of (a, 87) in Q 4 loss,

Uag)=an(45) +aaa S 1- 5 a1 )

where A=(Z“ le) was positive definite. Let (&8¢;,8¢) be invariant estimator of
12 2

(a,87). They defined g as g X+al))=bg(X) and
Xl_Xn X,— X, Xp-1— X,
gXxX) ' ogx) g( X)

Z=(Z1,Zz,"‘,Zn—1)=( ) Then Prabakaran and

Chandrasekar’s BIE was

5% X) = (81 X), 83 X>)=(am—gwr. Z“E),
2

where
wi= [ananE(8§|2)E(8y8l2) — a® E(8 pg2) (8 06 pl2)
—apan{E(8512)E(glz) — E(8 g2 E(8pl2)}]/
{a 14 22E(82|Z)E( 5(2)2|2) —a %2 EX( 302812)}
and

l/wé~ = [—a 1a 12(E(g2lZ)E(601302|Z) - E(aozgiz)E(amglz))
+aanE(gYlE(8 pl2) — a b E(8 pel2) E(dl2)]/
{ananE(@12)E(85l2) — at E(8 pel2)}

Some people concerned to show the relations of BIE and BUE. Takada (1981) showed that
BIE of @ was expressed by a linear combination of BUE of @ and A. And Ryu (1996)
showed that simultaneous BUE was simultaneous invariant estimator in some conditions that
there was complete and sufficient statistic. So, we can see that simultaneous BIE of (a,8")
is better than simultaneous BUE of (a, 87) if there is complete and sufficient statistic. And
by the definition of invariant estimator and invariant loss, risks of invariant estimators are
independent of (@, 87) and are effected by sample size # and invariant loss. If there is
complete and sufficient statistic risk of BIE is always little than or equal to risk of BUE.
Although BIE is better than BUE for every #, there is no significant differences for some
n.

In this paper, we want to get risks of some special location-scale probabilities and find »
in which risks of BIE and BUE have no significant differences. Section 2 provide simultaneous
BIE and simultaneous BUE of a normal and an exponential distribution in @ 4 loss and
calculate the percentage risk improvement (PRI). In section 3, we find # at which risks of
BIE and BUE have no significant differences. We make PRI graphs for a normal and an
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exponential distribution. Also for some selected # and a;, tables are given. In order to

convince us of our result simulation is performed and the results are presented.

2. Risks of Best Invariant Estimator and Best Unbiased Estimator

In order to compare two estimator we use PRI. The definition of PRI for BIE and BUE is
below :

(. __Risk of BIE
PRI‘(I Risk of BUE)XIOO‘

That is, if PRI is positive then we can think that risk of BIE is little than risk of BUE. And
PRI indicates degree of goodness. For example, if PRI is 40% then risk of BIE is only 60% of
risk of BUE. So, we can think that BIE is better than BUE such as 40%.

This PRI is related to @, @B, loss function and sample size n. If we use @4 loss and

BUE is invariant then PRI is a function of A=(Z“ le) and sample size #n because risk of
12 A

invariant estimator is independent of parameters @, [£. But we usually think that location

and scale parameters are equally important. So, in loss function, we usually set ¢ =ay .

And if B=kA=k<Z“ 312) , then the risk when Qg loss used is % multiple of the risk
12 22

when € 4 loss used. That is, we think that B=%kA and A give us same information for

every estimators. From these reasons, we want to suppose a; =ax»=1 in calculation of
risks and PRI

5 2
In normal probability, f(, g( x)=(2—7r18—2) exp(-—% g(x’;ﬁa) ) where x; is the 7

-th order coordinate of x, we can usually want to estimate (e, 8%). BIE is given by
Prabakaran and Chandrasekar (1994). BIE for general @ 4 loss is
( X— kS, k,SY),

where

|
I

S
=

Il
.

1

n—1 =

%)
I

l(x 1_:?) :
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n+1) n-ZFZ)

auazzl'( n-21-1)[( n-zi-B)_a%zpz( n-2i-2)

o tngn e T
a

Rao-Blackwell theorem is usually proved with squared error loss. But Rao-Blackwell
theorem is true with @ 4 loss. The proof with @ 4 loss is very similar to the proof with
squared error loss. So, we can see the way to find the marginal BUE with squared error loss
can be used to get simultaneous BUE in @ 4 loss. Thus, BUE for general & 4 loss is

(X,SH.

Since we know BIE and BUE, we can calculate risks of BIE and BUE in & 4 loss, where

A=(a1 a 12) . The reason of assumption is explained above.
12

Risk of BIE__

=R((e,8,( X—k,S,k:SD)

=R((0,1),( X—k1S.,£,5%)

=E[(X—k19)+2a,( X—k,S)(k,S*— D+ (£,S* =1 % 2].

Since 2z is an ancillary statistic and (X,S 2) is minimal sufficient statistic, by Basu's

theorem ( X,S?) is independent of z.

E[(X—k,8)%+2a 5 X =k S)(k;S*— D+ (k,5—1)*| 2]
=E[(X—-k,S ]+2a12E[(X EiS)(k,ST—D]+ E[(k2S—1) 7]

_ Gt DD r( ) -2n(3n—1)a121'(f§)2
(n—1) n(n+l)[( n= 1) —2n alzl'(—g—)z

The last calculation is simple but very tedious. So, we use computer software, "Mathematica”

version 2.2.3 for windows.
We can easily see that BUE is invariant. So, risk of BUE is independent of (a,8). And

we use & 4 loss, where A=<a112 0112).
Risk of BUE
=R((a, B,(X, 52))
=R((0.1),(X,S )
=E[( X +2ap,( X(SP = D+(S*-D* 2]
=E[( X)?]+2a E{( X(SP-DI+E[(S*-17]
__dn—1
T on(n—1)
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Above calculation indicates that risk of BUE is independent of a 5.

We can get PRI with nsk of BIE and BUE. The calculation of PRI is done by
"Mathematica” version 2.2.3 for windows. PRI in normal case is

200n(2(n— 1) 25t Lyz_ (3n—1>a%2n_”>2)
(3n— 1)((n—1) (n+1>n o Ly onatI 2) )

In exponential probability, f(, 5( x)= _,18 exp(~ —%; I (x;— a)) , where x,>a, e=R,

PRI=

A>0 and x; is the ¢-th order coordinate of x, we can usually want to estimate (a, 8).
This pdf is sometimes called as two parameter exponential probability. We represent the r-th
order statistic in X as X (,. BIE is
n+1 1V 5 )

( g X=X, X—Xq),

which is given by Prabakaran and Chandrasekar (1994). And BUE is

(—I‘—WX m— ) :
which is given by Epstein and Sobel (1554).
Risks of BIE and BUE in @, is calculated below. In this calculation, we suppose
A=( 1 012>.

»

ay 1
Risk of BIE
=R((a. ), - L X X-xw)
- &((0,D), (ﬁ”“ Xm—%; X X-Xq)
ZE[( RN X(l)—‘ Dok
+2a 12(”7141)((1)‘“%; XD{X-Xpt—-D
+U{X-Xn}—D7 2]

n’+1~2nay,
n 4

Since ( X, X () is minimal sufficient statistic in an exponential distribution, (X, X q) is
independent of z. In the above calculation we use the fact that ( X, X () is independent

of 2z and calculate with computer software like normal case. Because BUE is invariant, we
can think risk of BUE is independent of (e, A). So, we set (a,8) =1(0,1).
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Risk of BUE
=R((@,8.(5 Ly x -2,
=&(C0, 1)( (X )= X0,
=E[ (14 (nX(l) X0
+2a12( X = 0 (X=X ) - D)
+<nﬁl<x—x<l>>—1>2|z]

C (n—1)°
This result is calculated by “Mathematica” version 2.2.3 for windows. And we can calculate
PRI in an exponential distribution.

4 3I_o, 2 _ _1?
PRI in exponental distribution= 25 Sn_tin = in +2:4 Lt2n(n=D ay .

3. Percentage Risk Improvement in Some Conditions

In the above section, we suppose ap=ax»=1 and explain the reason of assumption.
Then an invariant risk is only related to @3 and #. So, we can draw 3 dimensional graphs
of PRI. Two axes are for a;, and #». The other axis is for PRI at @, and #. » is an
integer which is greater than 2 or equal to 2. And since A is positive definite,

auazz—a%2= 1—a%>0 . That is, ap is any real number which is greater than -1 and less

than 1.
In normal case, we draw Figure 1 with computer software Mathematica. For fixed n, PRI

has "U"” shape with relation to ai,, that is, PRI increases as a,, approaches 1 or -1. For
fixed a,;, PRI has "L” shape with relation to #. This result for fixed » is very obvious
and indicates that PRI has limit 0 as #» increases. So, we can find that an appropriate #
can be chosen for no significant differences. In order for PRI to be less than 5%, #n is
usually greater than 30. But when a; approaches 1 or -1, then n must be greater than 60.
Table 1 shows us PRI values for some fixed # and a ;. This Table 1 will be compared

with Table 2 which we get in the result of simulation.
In exponential case, we draw Figure 2 with computer software Mathematica. For fixed n,

PRI has "L” shape with relation to a. For fixed ai;, PRI has "L” shape with relation to

n. But PRI has the limit 75% as = increases for every a 3. Thus there is no » at which

BIE and BUE have significant differences. BIE is always significantly better than BUE. And
the limit 75% of PRI indicates that risk of BIE is only 25% of risk of BUE.
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Figure 1 : Normal case

Figure 2 : Exponential case
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In order to convince us of our result in normal case. First, we select #» and a,. For

selected n and a,,, 1000 data are observed from normal probability with ¢=0 and B=1.

And we calculate loss for BIE and BUE. Second first step is repeated for 2000 times, and

L ; is defined the ¢-th loss. Define R= 7&% 2@ for each estimators and use R as risk

t

of each estimators. So, we can calculate PRI for selected # and a,,. Third, for other

selected #» and ay, first and second step are repeated. As the result we make Figure 3 and

Table 2. Simulation shows us that our result is true because Figure 3 and Table 2 are very

similar to respectively Figure 1 and Table 1. Because PRI in normal case is dependent on

a%z, PRI has same values at app=tand a;3=—1*¢ in Table 1.
U om | -sm -6/11 -4/11 -2/11 0 2/11 11 6/11 8/11 10/11
n
2 61.17 56.05 54.46 53.75 53.43 53.33 53.43 53.75 54.46 56.05 61.17
6 31.87 2357 21.51 2066 20.28 20.17 20.28 20.66 21.51 2357 31.87
10 22.08 15.13 1355 1291 12.62 12.54 12.62 12.91 1355 15.13 22.08
14 16.93 11.16 9.90 9.39 9.17 9.11 9.17 9.39 9.90 11.16 16.93
18 13.73 8.84 7.80 7.39 7.20 715 720 7.39 7.80 8.84 13.73
2 1155 732 644 6.09 593 5.89 593 6.09 6.44 732 1155
% 9.97 6.25 5.48 5.17 5.04 5.00 5.04 5.17 5.48 6.25 997
30 8.77 5.45 477 450 438 435 438 450 4.77 545 8.77
34 783 183 422 3.98 3.88 385 3.88 3.98 422 483 783
38 7.07 434 3.79 357 3.48 3.45 3.48 357 3.79 434 7.07
42 6.45 3.94 3.44 324 315 3.13 315 3.24 3.44 3.94 6.45
46 592 361 3.14 2.96 2.88 2.86 2.88 296 3.14 361 592
50 5.48 333 2.90 273 2.65 2.63 2,65 2.73 2.90 3.33 548
54 5.10 3.09 2.68 253 2.46 2.44 246 253 2.68 3.09 5.10
58 476 2.88 250 236 2.9 2.27 2.29 2.36 250 2.88 476
62 447 270 234 221 215 213 2.15 221 234 2.70 447
66 421 2.54 2.20 207 202 2.00 202 2.07 2.20 254 421
70 398 2.39 2.08 1.96 1.90 1.89 1.90 1.96 2.08 2.39 398
Table 1 : Normal case
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N -10/11 -8/11 -6/11 -4/11 -2/11 0 2/11 411 6/11 8/11 10/11
2 65.17 69.17 40.30 71.59 4063 59.67 67.45 51.30 46.26 67.55 58.80
6 30.10 26.90 22.67 14.05 20.95 21.66 20.66 22.02 2244 22.74 29.83
10 23.44 13.70 12.21 13.14 17.48 10.56 17.79 10.79 1753 13.75 12.77
14 17.50 10.94 12.79 827 765 751 8.32 11.88 1135 8.50 21.54
18 14.74 7.80 10.66 6.40 7.18 6.09 7.24 6.60 832 4.95 13.15
22 16.08 8.40 6.38 7.39 7.39 7.27 4.05 589 569 9.46 16.79
26 750 9.49 6.40 4.29 534 6.39 4.04 4.09 4.65 5.95 7.55
30 838 6.32 5.84 4.93 468 466 5.71 493 5.76 5.76 8.23
34 8.24 5.05 259 391 3.60 493 3.65 3.33 4.00 5.19 8.57
38 482 4.96 3.76 3.08 381 342 230 3.28 3.18 511 6.89
42 502 3.94 3.98 2.27 2.46 2.36 362 3.16 4.32 3.37 5.89
46 8.04 2.90 251 291 3.80 3.00 279 3.63 3.32 3.60 6.87
50 6.91 340 291 285 1.62 3.01 2.70 213 2.64 3.14 5.53
54 5.22 340 2.29 2.50 223 252 276 3.03 3.04 3.78 6.23
58 4.27 137 291 1.98 244 1.03 272 218 2.90 2.54 3.74
62 6.04 0.89 2.32 3.28 1.87 3.14 2.39 2.83 247 3.62 5.34
66 3.73 2.03 1.86 213 1.94 1.80 199 1.35 2.30 3.21 4.33
70 4.27 262 214 3.25 1.58 1.86 2.26 2.03 2.29 3.73 331

Table 2 : Simulation for normal case

Figure 3 : Simulation for normal case
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