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Higher Order Expansions of the Cumulants and the Modified
Normalizing Process of Multi-dimensional Maximum
Likelihood Estimator!)

Jonghwa Na?

Abstract

In this paper we derive the higher order expansions of the first four cumulants of
multi-dimensional Maximum Likelihood Estimator (MLE) under the general parametric

model up to and including terms of order O(n~'). Also, we obtain the explicit form
of the expansion of the normalizing transformation of multi-~dimensional MLE and
show that the suggested normalizing process is much better than the normal
approximation based on central limit theorem through example.

1. Introduction

A lot of studies related to the normalizing process are given by Cornish and Fisher (1937),
Wallace (1958), and McCullagh (1987), etc. In paticular, Cornish and Fisher (1937) and
McCullagh (1987) suggested the general form of the normalizing process of the univariate and
multivariate random vectors of general type, respectively. But, the explicit forms of cumulants
are needed to apply their method to a specified statistics such as maximum likelihood
estimators (including multi-dimensional cases) and so far no explicit calculations of cumulants
are known for multi-dimensional MLE.

In Section 2, we derive the explicit forms of the first four cumulants of multi-dimensional

MLE under the general parametric model up to and including terms of order O(n —l). By
using these results, we show that the faster normalizing transformation due to McCullagh
(1987) has a definite form in the case of multi-dimensional MLE. A practical example of
univariate case is also given to show the efficiency of the suggested normalizing process. The
detailed derivations of the theorems in Section 2 are also given in Appendix. To prove the
theorems in this paper, the computational method of generalized cumulants and the basic
lemmas concerned with tensor method are needed. The papers related to the calculations of
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generalized cumulants are also given by Speed (1983) and McCullagh (1984, 1987). In
particular, we shall adopt the notation of Einstein summation convention (or index notation)
and the expressions related to tensor methods used by McCullagh (1987). Also the studies
concerned tensor methods are given by many authors including McCullagh (1987),
Barndorff-Nielsen and Cox (1989), Stafford and Andrews (1993), Stafford (1994), and Stafford,
et al. (1994).

2. Higher Order Expansions of the First Four Cumulants of
Multi—dimensional MLE

Suppose that Y=(Y},..,Y,) has » independent and identically distributed components

so that the log-likelihood for the full data may be written as the sum
K6;Y)=2(6;Y) .
The parameter vector 8 with components 8',..,8° is assumed to in some subset, @ , of

R’? . By convention, we use superscripts to represent the coordinates of an arbitrary point in

® . Suppose that U,, Uy, .. is the log likelihood derivatives at an arbitrary point @ , ie.,
U= 981 =(55) K61 @D

In (2.1), I stands for an index set 7,..7, and |/| is the number of blocks in I, ie,

{1l = v.

Let
x=EU; ;0= EC (-95)K6Y);6)
X = B((55) K6:Y);0) .

The normalized log likelihood derivatives Z,,Z,, .. are defined by

UI_XI UI—n X7

=TV T
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More generally, let

X7

= cum( (25) 1 K65Y), . (5g) 1 KO Y1)

and

n = am (5), L85, (55); L(6:1))

= nxp..1

Further, we adopt the summation convention according to which if an index occurs both as
a superscript and as a subscript in a single expression then summation over that index is

understood. Thus, for instance, a'b;= a'b,+ -+ a”b,, and a™ by = a%by+ -+ a™b,,

The likelihood equations U9 ;7)=0 may be expanded in a Taylor series in
d=Vn(8—6) to give

W27 4+ (nx+VnZ,) 8 /n'?+ (nxu+ n'?Z,.) & 3/ (2n)

+ nx, 8 362N+ 0,(n"H=0

7.5 . . -
Let «x is the inverse of «x,, , where

e = 9° vy
Xy s= X rs E( 867805 L(e rYl) ,0) (22)

—_ —st —

Note the expression (2.2) represent the Fisher’s information numbers per observation and
s rstu
X , x x

, , ... are defined as follows.
s —ri Ts]
X = Xx X Xi
st i s —tk
X = X X X Xk »
Tty i TS ThE —uld T
X = X X X ikl s

In this paper, we derive the explicit forms of the first four cumulants of the solutions of
the likelihood equation up to and including terms of order O(n—l) .
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Lemma 1. ( McCullagh (1987) ) Let @ =Vn( 9—68) , where @ satisfies the likelihood
equation U,(®) =0 . Then

7 __ alr+ n—l/Z a2r+ n—l a3r+ O(n—B/Z)
where

—7,s
alr= X Zs

ay= x"" x"“ZyZ,+ x™Z,Z,/2

—7r.s —hLu

s U T W —rst —u,v
ay’' = x  x x ZyZWwZo+ x x Z,Z,Z,

+ ;r,s ;h‘v ZstZqu/2+ ;mt ;“vw 7ft,vZSZuZw/z

—_7rs

+ % A 2o Z 2,124+ ™ 2,2,2, 16
Lemma 2. In the notation introduced above, we have the following results.

(1) E(Z)=0
(2) Cum(le»""Zlv)=(1/\/;l)v—2x],,.A.,I,, ’ VZZ

(3 ; 11= Xn..1,= 0

L. IT&ERD

Here, I,]..|I,= P(I) means all partitions of the index set I. For examples,

Ea=0r _xa,bz— xf‘b
Xabet %a6[31+ x =0 _ _
Xasedt *asaldl+ % 31+ %4561+ % 0a=0
where the bracket notation [#] is simply a convenience to avoid the sum of k similar terms,

i.e., the expression ;a‘bc[B] is the abbreviation of x abe T x bae T x ¢ ab -
(proof) The results of (1) and (2) are obvious from the definition of Z; and the property of
multilinearity of cumulant tensor. For the proof of (3), see the exercise 7.1 (on p.222)

of McCullagh (1987).

By using Lemma 1 and 2 above, we can derive the first four cumulants of multi-dimensional
MLE.

Theorem 1. The mean and the covariance of multi-dimensional MLE are given by
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(A) ECY)=—=n"2 %" %" Ry put Xsw)I2+O0(n™3%)

(B)
r s —rs - —ri —s,j —kI — —r.st L] T
Co( ¥, )= " +n 2 x™ 7 x" kgt x x xjg)
—1 —rs "htu "ij, T —k{ — — —b1 — -
+a x0T T xpat X Kpa Xy T2 X Xp Xy

+ xa‘b ; ast ;biu /2)+ O(n_3/2)

(Proof) See Appendix

Theorem 2. The third and the fourth cumulants of multi-dimensional MLE are given by
(C)
cum( /87, 3s’ /St) = n—llz ;r,i ;s'i ;t,k( ;,;;_/,-i—ﬁ ;i,jk+3 ;,'jk)’*' O(n_B/Z)

= a2 X X Crap— 10+ 0™
(D)
cum( ", 3, %,
= 2 X X U et 24 ket 12 *"° Kaii Kok
—a b — % VL ¥ ** % x
+24 %" iy %jnt2A X Xpw Xt 12 X7 Ko Xiw

+ 12 ;a'b ;alz‘ ;bki }+ 0(n~3/2)

(Proof) See Appendix

3. Modified Normalizing Process of MLE

The results in Section 2 are applicable to the normalizing transformation introduced by
Cornish and Fisher (1937) and McCullagh (1987). They suggested the polynomial
transformations of general statistics which converge to the normal distribution as a device
for the faster normalizing transformation by using the knowledge of the first four cumulants
of the statistics. We introduce the results of McCullagh (1987). Assume that
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X=X\ X 2, .., X?) is a standardized random variable with cumulants
0, aij’ n—l/zx i.j,k’ n "lx I-.f,k,[

and so on, decreasing in power of n'?. The following transformed variable

Y=(Y!, Y% ., Y?) is distributed standard normal with error O(n ~%%).

Y= X'=n"" (3k""h o+ 3k" hit,+ k" 'hy ) | 3
=0 RN Ryt 6k h ki AR R Gk, R R ) ] 4
. . (3.1)
+n 7! {(36k R+ 18R TR VR

+(18ka,i,ika,r,s+12ki.i.ikz',r,s+36ka,i,rka,i,s+27ki,i,rki,i.5)h rshi

where k%% %% is a shorthand notation for 202‘;/?“”’"7? @54 and for a fixed index number
= e

i, kYR h, = gki'i.i'rhﬁ h,. Also, £“"“" is the cumulants of multi-dimensional

random vector X = (XI’XZ,...,X’) and &, is the Hermite polynomial related to the

multi-dimensional normal distribution.

Example Suppose X has a lognormal distribution, meaning that for some normal random
variable, Y, X=exp(Y). For convenience, assume Y is My,1) in which case
E(X)=exp(uz+1/2) and the standard deviation

o=V Var(X)=V exp{2(z+1)} — exp{2u+ 1}.

The MLE of parameter E(X) is given by X and the asymptotic distribution of the
standardized random variable Z;=V n(X— E(X))/o is standard normal. Fortunately, the
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above polynomial transformation simplifies considerably in the univariate case because of the

most terms except x " hy, x"tP hy, xPt et hy, and x "'k "' h; are null. Also,

these non-vanishing terms are more simplified as the following terms
2 2
p3hy, O4hs, o3h;, and p3hy,

respectively, where A;'s are the Hermite polynomials related to the univariate normal
distribution and p; (7=12) is the ¢-th standardized cumulant of Z;. So, the modified

normalizing transformation is given by
Zy=Z,— 05( 22— 1)/6— 0,(Z3 —3Z,)/24 + 05(4Z} — 1Z,) /36 (3.2)

where o3 and p4 are the third and the fourth standardized cumulant of Z;. Figure 1 & 2
show the kernel density estimate and the normal probability plot of the standardized random

variable Z, and the modified normalizing transformation Z; for #=0, n=100 (sample size),
and 1000 replications. The distribution of Z; is skewed to the right even for relatively large
sample size but, the suggested statistic Z,, which is a function of Z;, is very similar to

standard normal distribution. So, we conclude the suggested normalizing process converges
more faster than the standardized ML estimator to normal distribution.

Figure 1. Kernel Density Estimate and Normal Probability Plot of Z; for n=100
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Figure 2. Kernel Density Estimate and Normal Probability Plot of Z, for n=100
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4. Conclusions

A well known asymptotic property is that a multi-dimensional MLE has normal distribution.
In this paper we derive the first four cumulants of multi-dimensional MLE and suggested the
explicit form of the transformation of multi-dimensional MLE which converges more faster
than the standardized ML estimators to normal distribution. Detailed calculations need the
knowledges of the methods of cumulant computations and tensor methods in McCullagh
(1987). Using these faster normalizing process we can derive more accurate asymptotic
inferences based on multi-dimensional MLE even for small sample sizes. The accuracy of the
suggested modified normalizing process is also considered through simple example. In a
similar fashion the suggested method can be adapted to many other statistical inferences.
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Appendix
Let us prove Theorem 1 and 2 in Section 2.

Proof of Theorem 1.

(A)
E( )= (»")"E( a)) (i=1)
— n"l/Z( ;r,s ;t.u ‘;St‘u+ ;"St ;s't/2)+0(n—3/2)
T St 1T R R a4 OO0
=02 %" X xgut Hewl2)+ O™
=12 R Xorut Xow)/2+ O(n~%?%) by Lemma 2(3).
(B)
Co( 3", 8= (n VO Y 1Cou( a;”, a) (,7=1)

= Col a,”, a\*)+n Y2Cov( a,”, ay*)[2 ]

+ 2 Cov( ay”, ar’)+ O(n?%)

&)

Co ay”, a\%)= x"" "' CoZ;, Z)= »"" & x;; = x°

COU( alr, [Zzs)= ;’7'[ ;S‘j ;k’ICOU(Z,',Z,'kZ[)'f' ;r.i ;SjkCOU(Z,‘, ZjZk)

r i r.i —sik

= X AMEZzuz)+ 77 x™E(Z:Z;Z) by Lemma2(1)

ri —

— 5.5 —hi —r,{ —gk
= x  x x cum(Z,Zyp Z)+ x x cum(Z;,Z;,Z)
—l2, Tri Tsi Tkl T S e e ke
= » 1/2( a7 7 kit x0T T x0T x Xase Xijk)

_ r,i —s,f —kI — —7r,bc¢ —s,a —
= n 1/2( X X X )(,"jk_/'i' X X X abe )

Col ay’, @) = x° %" %" X' ConZyZ,, ZuZ)+ x7° x"* 2™ Con Z4Z,,, Z,Z))

+ %™ x*CconZ,Z,, Z,2,)/4
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7S

= 2" XX EM (co 2, Zy)Cov(Z,,Z)+ Co Zy, Z)) Co Zj, )}
+2 %7 % X" Con Z,, Z)Co Zy, Z,)

+ %™ x™*ConZ;, Z,)Con(Z,, Z)[2+ O(n™Y)

—vr,s —tu —71,] _k,I - - - -
= x X x x { Kist Xiut Xig xu.;‘k}

- Lu Tiha TLb Thke T — -
+2x x x XX Xape Xjig Xia

g s : e —hf— o~ — = )
+ 7T T T T X xae Xaet Xjs xp 2+ OKn0)
—rs —Hk —i] — —r,s —tu —i,j — kIl — -

= x" x x Xpat x  x xT X Xia Xy

b — - —ra —be —cf —id—
Xabe XjqT X XX Kape Xaet /2

, —ii —kl— = —hi— =
=x x x ( Xjat x Xpg Xupt2 x Xy Xig

—ab — — ~
+ xa X ast iju/2)+0(n 1)

This completes the proof of Theorem 1.

Proof of Theorem 2.

(C)
cum( /Sr’ /33’ /3t)= cum( air, a,‘s, akt)(n—l/Z) i—l+j—1+k—-1 (i,j, kzl)

2

= cum a,”, a)°, ;') +n" "% cum( a;”, a)°, a;’)[3 1+n”"

{cum( a)”, a)®, a3')[3 1+ cum( ai”, a2, a,')[3 1}+ O0(n™3%)

—ri —s,j — Lk —

t —ri s i Ttk _ :
cum( ay”, a’, ai')= x" x x cum(Z;,Z,Z;)=n V27 %™ %" xiin

t —ri —s,j “ta —bc
cum( a,”, a)°, ax')= x" x x" x cumZ; Z;, ZppZ.)

+ %" X K cum( Z,, Z;, Z,Z) 12
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=2 %" X XX cum(Z, Z) cum(Z;, Z,)

—ri s, f " tab

+ 7 ™ cumZ;, Z,) cum(Z;, Z,)+ O(n” )

_ —7ri —s,b —ta — —r i —s,f —tu )
=2x" x x Xigpt x X x T x X Xy

. ;i,a ;j.b+ O(n_l)

= ;r,i ;s,i ;t,k {2 ;i.jk+ ;ijk} +O(n_1)

cum( a,”, ar°, a3')= n"'?)

cum( a,”, ay°, ay')=O(n""?)

(D)
t _ i 5 —
cum( 8, ¥, ¥, ) =TV cum(a, aff, ai, a)
=cum( a,”, ai°, @', @;*)+ 0" cum( a)”, a°, a" ax*)[4]
+ 0 Yewm( a7, a;°, a;', a3l + cwm( a;”, ai°, a', a,*)6]}

+ O(n—B/Z)

¢ —rd s —tk —ul
cum( ay”, a’, a1, a") = x  x" x x  culZ;, Z; Zy, Z))

1 —7i —si —th —ul —
=n X X X X Xijki

t —r i —s,J —tLk —a b —c¢d
cum( a,”, a;°, a1', a*) = x  x  x x  x  cumZ;,Z;,Zy Zs.Zy)

—r i —s,j —tk —ab
+x" x x x cwm(Z,Z;, 24, ZZ.)]2
r. i s, j —tk —ab

=6x"" x " x"7 cum(Z,,, Z,Z;) cum(Zy, Zy)

s "Lk Tau T"hv —cw

71
+3x " x x x x X wow

cum(Zy, Z;, Z;) cum(Z,, Z}) +0(n™ Y

—ri Tsj "tec "ab 12—
=6x"" 7 XX TV x

—rd —sj —tw —au —bv — - -1/2 -1
+3 %7 X X X K K X n TP O(RTY)
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- —r i —s,f "tk —ul - —a,v - -
S A R (TN I ST T S B N 0. ¢ h

—7ri —s,j —tLk —ab —cd —ef
cum )", a°, aif, a3*) =x"" ' «x "7 k0 1 cum(Z;, 2, Zhy ZoZ 32 )

R T XN cuml(Zi, 2y, Za Zy ZoaZe)

R e VAN AN A AW AV
+ R RS R e Xeo cum(Zi, Zj, Zy, ZyZaZp)[2

N x"" ;S_,' ;t.k ;a,b ;c,d ;e.f cum(Zi,Z': Zk,ZbdecZe)/z

—rd —s,j —tk —abcd
+

x0T T cumZ, 2, 2y, ZbZ . Z)]6

—vri —sj —te —ab Tcd - —rv —"s,) —td Tau —cw T -
=6x  x  x x  x  Xisp Xjaeetbx  xT x x  x Xuww Xjcd
—ri —jv —tw —ab —cu — - 7,y T S5X "Lz Tau -
+3 x X x X X Xy Xipe T3 x x XX Xupw X oy

r,v TS, w T LX

—ri —s,d —tf —ab — - —a,u — -
+3x " x x7 x Xipy t x 2" X wox FO(n™Y?)

7 s g T

tk —ul —a,b — - —ab —
x " x 6x xiw x;pt6x

= ¥ Xubi Xj ak

+3 %™ Ko Xint3 Xivg Xt 3 Xt X i) +O(n~%)

—ri. —si. —ab—cd — abe
cum a,”, a’, ay, a*)=cum( x"'Z;, ¥7'Z;, x*° x"°ZyZs+ xZZ.12,

X2zt x2,2,12)
_ TrioTsj Tab —eod Tt

= x" X X XA A cum(Z, 25, ZZ gy Z o Zo)

—ri —sj —ab —c,d —H1 Tum —
+ x

x x  x x x x"" % un X cuml(Zi, Zy ZsoZar ZoZ )

—ri —s,j —al —bm —cn "Ho —up Tw
+ x x x  x x X x

X e ;Imn 7(oquCl”n(Zi» Zj, Zch»Zqu)/4
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r,i —s,j —ab —c,d —tu

=8 1" X" X" X% %" ;v’wxcum(Zbc,Zuv)cum(Zd,Z,-)cum(Z,-,Zw)

s, —a b —c,d —t.1 —um

+8 %" X X XK e X i X CUrl Zye, Z,) cuml Z, Zyeun(Z;, Z,)

~ i —sj —al —bm —c,n —to Tup —v,g — -
+2x7 x7 x T x XX X X Kimn Xopg

X cum(Zy, Z )cum( Z., Z)cum(Z;, Z,) + O(n~ 12y

n —ab —tl!l —um

—7r.c Tsv —ab —tu —7,c s, - -
b 4 X X X Ximn Xu, be

=8+ £ %" %" Xy +8x

—r,m —s,q —a/l —mp —to — — —
+2 7 X7 X T X Xy Xopet O 12y

—rd —sj —tk —ul — —ab — —u, b —m,p — — —1/2
= 2" 2" 2" 2" Baupt8x" xjw 2“2 %77 X xpt + 00"V

—ri —sj —¢

ka0 —ab — = —ab = = -
= Xx X X Xu {8 X,’j.k1+8 Xa X jpt Jtu,b,'+2 Xa X g xldb} +O(7l 1/2)

This completes the proof of Theorem 2.



