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Support Vector Machine for Linear Regression
Changha Hwang!), Kyungha Seok?

Abstract

Support vector machine(SVM) is a new and very promising regression and
classification technique developed by Vapnik and his group at AT&T Bell
Laboratories. This article provides a brief overview of SVM, focusing on linear
regression. We explain, from statistical point of view, why SVM might be attractive
and how this could be compared with other linear regression techniques. Furthermore,
we explain model selection based on VC-theory.

1. The Basic Idea

There are two types of SVMs, ie., SVM for classification and SVM for regression.
However, SVM classification can be viewed as a special case of SVM regression. SVM can
be used for both linear and nonlinear regression. In this paper we explain SVM for linear
regression. For details, see Gunn(1998) and Smola & Scholkopf(1998).

Suppose we are given training data {(x, v,;,), i=1, -, n} C¥ XK, where ¥ denotes the

space of the input vectors, R?. Our goal is to find a function F(x) that has at most €
deviation from the actually obtained targets y;’s for all the training data, and at the same
time, 1s as flat as possible. We now take the form

f(x) = wx+ b with wef, beR
where superscript ! represents the transpose of a vector. Flatness here means that one seeks

small w. One way to ensure this is to minimize the Euclidean norm | w | % Formally we

can write this problem as a convex optimization problem by requiring:
minimize % I wli?,
subject to ¥, — w'x;,— b < e and wx;,+ b—y, < ¢

The underlying assumption here is that the convex optimization problem is feasible.
Sometimes, however, this may not be the case, or we also may want to allow for some

errors. To make it feasible, we introduce slack variables &, &'. Hence we arrive at the
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formulation stated in Vapnik(1995).

minimize  § | wl?+ C 3 (& + &),

v, — w'x,-— b < e+ &
subject to w'x;, +b—y, < e+ &
éz" E: = 0

The constant C> (0 determines the trade off between the flatness of f and the amount up to
which deviations larger than & are tolerated. Here, &, & are slack variables representing

upper and lower constraints on the outputs. The formulation above corresponds to dealing

with a so called e-insensitive loss function | &| . described by

e = {0 16l <e

| £] — & otherwise

The key idea is to construct a Lagrange function. Hence we proceed as follows:

L= Jlwl®+ CR&+e) — Nale+&—yi+ w'z,+b)

— Sai(et &+ v w'n,— b) = (néi+ niED)

We notice that the positivity constraints «;, a;, 7;, 7; =0 should be satisfied. Hence we

arrive at the optimization problem below.
maximize — % ﬁ; 2 (a;—aiNe,—aj)xix; — ¢ 2 (a;,+al) + 2y,~(a/,-—— arl),
1=1;= = 1=

subject to Z(a,- —a¢!)=0 and a,, a; € [0, C]

Solving the above equation with these constraints determines the Lagrange multipliers,

@;, a;, and the optimal regression function is given by
w = Z‘l(a, —a)x;, b= — 1 wlx,+x],

where x, and x, are support vectors. The Karush-Kuhn-Tucker(KKT) conditions that are
satisfied by the solution are,

22l =0, i=1,, n.
Hence the support vectors are points where exactly one of the Lagrange multipliers is greater

than zero.
2. VC-theory Based Model Selection

For SVM regression, there are two parameters € and C need to be defined by the user.

Parameter & controls the precision of the data fitting by adjusting the loss function.
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Parameter C can be considered as the regularization parameter, which controls the trade-off
between model complexity and the fitting of the data. Both parameters will affect the final
mode! complexity, and therefore should be used in model selection. Model selection in SVM is
still an open issue. Statistics is usually based on asymptotic properties of data. The Statistical
Learning Theory (also known as VC-theory) provides comprehensively mathematical and
conceptual framework for predictive learning with finite samples. VC-theory provides a very
general and powerful framework for complexity control called Structual Risk
Minimization(SRM). In VC-theory, the model complexity is defined as the VC-dimension,
which coincides with the classical definition (the number of parameters) for linear
parametrization.

Under SRM, a set of possible models (approximating functions) are ordered according to
their complexity (or flexibility to fit the data). Specifically under SRM the set S of

approximating functions f(x, w), w2 has a structure, that is, it consists of the nested
subsets (or elements) S, = {f(x, w), we 2,} such that

S CS,C - CS,C
where each element of the structure S, has finite VC-dimension #,. By design, a structure

provides ordering of its elements according to their complexity (i.e., VC—-dimension):
h < hy < 0 < hy £ oo

For regression problems with squared loss the following bound on prediction risk holds with

\/ hLln(-ahﬂH-ll— In 7
n

where & is the VC-dimension of the set of approximating functions and 7 is a constant

probability 1 — #:

-1

1—7

prediction risk < *71; Zl (v; — v,)° N
which reflects the tails of the loss function distribution, i.e., the probability of observing large
values of the loss, and a is a theoretical constant. Here, (# ), = max (2, (). Vapnik(1998)
shows that we can use this bound with constant « close to 1, so we choose a= 1. We can
also set »=1. From a practical viewpoint, the confidence level of the above bound should
depend on the sample size #, ie. for larger sample sizes we should expect higher confidence

level. So we set 7= 1/\/71. Making all these substitutions into the above bound gives the
following penalization factor which we call Vapnik’'s measure:

-
r(p, n) = (1—-\/})—p1np+ lgnn >+

where p= k/n. The common constructive implementation of SRM is to choose the optimal

structure S, minimizes this prediction risk bound.

As we have seen, applying VC-based model selection requires the knowledge of the model
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complexity measure, i.e., the VC-dimension. Estimating the true VC-dimension of SVM for
regression is not easy, since the empirical VC-dimension estimation method will result in
tremendous amount of computation. We would like to introduce the following approximate
VC-dimension measure for SVM. For details, see Shao(1999). Approximate VC-dimension for
SVM is given by

h = number {a{”:0< aP<C} -1

or % = number{ support vectors} — number {¢;: 2!’ = C} — 1.

Here, af*) represents @, or ;. Since we have the estimate of VC-dimension, we can apply

VC-bound for model selection.
3. Numerical Ilustrations

To see how SVM performs in the linear regression problem on real data, let us look at
three examples. For the comparisons on three data sets, we use least squares(LS) regression,
least absolute deviations(LAD) regression, M-regression, nonparametric regression and ride
regression besides SVM. Three data sets are acid content data, turnip green data and stack
loss data. For details, see Birkes and Dodge(1993). Some results are taken from their book.

Fig. 1. SVM Linear Regression for Acid Content Data

Example 1. Consider the acid content data with no outliers. We see from Birkes and
Dodge(1993) that all the data points fall closely around a straight line. For such a
well-behaved data set, all the regression methods give very similar results. LS estimates of

By, By are 3546 and 0.3216, respectively. Compared with the LS estimates of By and £, the

LAD estimates were within 2%, the M-estimates were exactly the same, the nonparametric
estimates were within 194, and the ridge estimates differed only in the fourth significant digit.

SVM estimates of £y, 8; are 35.35 and 0.3219, respectively. All the estimates of ¢ were not
so close; they were 1.230, 1.233, 1433, 1595, and 1364 for LS, SVM, LAD, M-, and

nonparametric regression, respectively. Hereafter, the estimate of ¢ for LS and SVM 1is the
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square root of mean squares error. The size of the intensive zone €, and the constraint
parameter C minimizing VC-bound were 0.7143 and 9890, respectively. To conclude, we can
say SVM woarks as well as LS does for the acid content data with no outliers. In Fig. 1,
support vectors are circled. In many practical problems, only a small amount of input vectors
turn into support vectors. By the way, in this example 12 out of 20 points were support
vectors. =

Example 2. Let us apply all six regression methods to turnip green data. Table 1 lists the
estimates ?0, Pl, 32, %3, 7?4 of the regression coefficients, the estimate o of the standard

deviation of the error population, and number N, of standardized residuals with absolute

value larger than 2.5.

Table 1. Results on Turnip Green Data

By B, B B3 B 5 N,
LS 1196 -0.03367 5.425 -0.5026 -0.1209 6.104 0
LAD 133.8 -0.03367 6.635 -0.6974 -0.1460 4.140 4
M-regression 122.7 -0.03967 5.763 -0.5443 -0.1282 4177 4
Nonparametric 123.7 -0.04478 6.043 -0.5583 -0.1339 4.509 3
Ridge 1159 -0.02805 4.807 -0.4363 -0.1089
SVM 116.9 -0.04060 4.653 -0.4001 -0.1071 6.386

LAD, M-, and nonparametric regression are especlally suitable when there are outliers in
the data. In all the three methods the data points numbered 10, 19, and 20 had standardized
residuals more than 2.5 in absolute value and hence may be regarded as outliers. The point
numbered 15 was also detected as an outlier by LAD and M-regression and was almost
detected by the nonparametric procedure. All of these points were detected as support vectors
by SVM. SVM usually picks the outlier as one of the support vectors. However, the fitting
result has not really been pulled up or down a lot. This good virtue is due to the robust loss
function and complexity control. Here, & and C minimizing VC-bound were 04490 and 1,
respectively. This small amount of C is due to collinearity.

For the ridge regression, only the regression coefficients are given because this method is
intended to be used only for estimation. The first five estimation methods in the table produce
estimated coefficients that are noticeably different. SVM, LAD, M-, and nonparametric
regression are especially suitable when there are outliers in the data. SVM and Ridge
regression are especially suitable when there is collinearity among the explanatory variables.

Because of the high correlation of 0.997 between X, and X,( = X3), we expect ridge

regression and SVM to give more accurate estimates of 3, and /[y than LS. Note that ridge
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estimates ?1, ﬁg, Pg and P4 are all closer to 0 than the corresponding LS estimates. We

can see the same phenomena for SVM. This agrees with the description of ridge regression
as a procedure that shrinks the LS estimates. Actually, SVM is a kind of ridge regression.
Therefore, we can conclude SVM works well when there are outliers in the data and is
collinearity among the explanatory variables. In this example 25 out of 27 points were support
vectors. m

Examples 3. Next we consider a data set that appeared as example in many books and
articles. The data consist of measurements from a factory for the oxidation of ammonia to

nitric acid. On 21 different days, measurements were taken of the air flow( X;), the
temperature of cooling water( X,), the concentration of acid( X3), and the amount of ammonia
that escaped before being oxidized, called stack loss( Y). All six regression methods were
applied using the model y= 8, + 5 X+ B8 X, + B3X3+ e. Table 2 shows the estimates
2-?0, 2?1, Bz, %3 and ?7, number N, of standardized residuals with absclute value larger

than 2.5.
Table 2. Results on Stack Data

By B B, B4 o No

LS -39.92 0.7156 1.295 -0.1521 3.243 0
LAD -39.69 0.8319 0.574 -0.0609 2.171 3
M-regression -41.17 0.8133 1.000 -0.1324 2.661 1
Nonparametric -40.16 0.8155 0.888 -0.1202 2.920 1
Ridge -40.62 0.6861 1.312 -0.1273

SVM -38.00 0.8431 0.730 ~0.1280 3.476

There are substantial differences in the estimates of B, Bl, B, and ?3 for the six
methods. This is at least partly due to outliers. As in Example 2, the M- and nonparametric
estimates are similar to one another. Here, € and C minimizing VC-bound were 0.8572 and
16632, respectively. In this example 15 out of 21 points were support vectors. It is hard to say
whether SVM is good for this example or not. However, we can conclude that SVM works
well for this example because there are many support vectors contain the information required
to summarize the data. m

In the above three examples we have applied six different mothods of regression to the
same set of data for the purpose of comparing the methods. If our only purpose is to analyze
the data, it would still be good practice to apply more than one regression methods. If you
use several methods to analyze a data set and they all lead to similar results, you can feel
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confident about your conclusion. If there are serious disagreements between the results of the
different methods, you should examine the data more closely to see the reason.

We would recommend using least squares and one another method. The personal preference
of the authors is SVM because it focuses on both data fitting and generalization.
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