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Asymptotic Properties of a Robust Estimator for
Regression Models with Random Regressor?

Sook Hee Chang?, Hae Kyung Kim3 and So Young Sohn?

Abstract

This paper deals with the problem of estimating regression coefficients in nonlinear
regression model having random regressor. The sufficient conditions for consistency
of the L;-estimator with random regressor are given and discussed in this paper. An

example is given to illustrate the application of the main results.

1. Introduction

We consider, the following regression model, defined by

yz':f(xz'y60)+€j ll=].,2, (A (B (11)

where 8, is unknown parameter in R” | &; is random error and x; 1s random regressor.

Let (2, A, P)denote the underlying probability space and assume that vy, is a random variable
having range Y and x; is a random vector having range X contained in R™ , where both Y and
X are borel subspaces of their respective Euclidean space. The parameter space © is assumed to
be a compact subspace of R’ and the true parameter 8, is contained in 6.

For each fixed #, a Li-estimator, 8,, of 8, is defined as the value of 6(w) in @ such that

D A)(w)= 2} | ¥ (@)~ Az (a), 6) | (12)

1s a minimum, for each fixed we$.

It is well known that Lj-estimator is more robust than L,-estimator, particulary in the

presence of vertical outliers in the 3y-direction.

Various authors have provided conditions which ensure the existence, consistency of the L;-

estimator in the recent two decades. Most of studies are related to the properties of L,-estima
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-tor for linear regression models. In the literature there are only few papers dealing with the L,
-estimator problem for nonlinear regression models. Obehofer(1982) studied weak consistency

result of nonlinear L,-estimator and Wang(1995) and Kim(1995) proved the consistency and
normality of nonlinear L,-estimator. These papers used fixed input variables for showing the
asymptotic properties. In many statistical problems, the input variable should be considered as a
random variable. Bhattacharyya(1992) showed only strong consistency property of nonlinear L,
-estimator with multiplicative error term and random regressor.

We are concerned about the property of normality of nonlinear L;-estimator with random
regressor and additive error term and random regressor. Thus the main purpose of this paper is
to show the \/Z—consistency and normality of L -estimator with random input variable, under
simpler and more practical conditions than other papers. We know that if 8, is \/71—consistency,
or equivalently, Vn( 8, — 8,)is bounded in probability, &, converges to 8, in probability at the
rate of 1/ Va.

To show the properties of V#( 8,—6,), we will first modify the object function D, as

follows:

G =2 e AP | = | &l (13)

where f{¢)= Ax, 0,+ %ﬂ @) — fx; hgder pVn(O—46,).

It is easy to see that the vector Vn(8,— ,)minimizes G,(#) when 8, minimizes D, in (1.2).
Let G denote the distribution of function &; and F the distribution function of x; having

range X. Throughout this paper, we use the following notations;

v Az, 6) = [%f(x e)] (

px1)
- AT OF T, = V,(6)

f v Ax,0)v TAx, O)dF(x) = V(6).

2. Vn—consistency of L,—estimator

We will now formally state the regularity conditions needed to find the \/Z-consistency of the

L-estimator.
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Assumption A

Al {(x;, &;)} are independent and identically distributed.
A2. For each ¢, x; and ¢; are independent.
A3. {e;} have a unique median at 0 with finite variance and probability density function g(£)

is continuous with g(0)>0.
A4. The function Ax,6) is continuous on XX & and P{xeX: Ax, H+Ax, 0,)}>0 for each

fixed 6,#6.
Theorem 2.1. Suppose that Assumption A holds for model (1.1). Then 5; is Vn-consistent.

Proof of theorem 2.1. According to the theory of probability, we know that if 5; converges

to 0 almost surely (a.s.), then q/S; is bounded in probability. Hence it suffices to show that for

any M>0,

lim inf inf
n—o | é—0| >M[Gn(¢)“Gn(0)] >0

as., due to G,(8,)—G,($)<0 for deVn(@®—8,). Since G,(0), it is sufficient to show
lim inf inf 1
poo |l >u m CHD >0

If we show that El | &;—f{@®) | — | &;11>0 on | &l >M , by the strong law of large
numbers (SLLN), our proof is finished.

It follows from Assumption AZ that the preceding requirement is equivalent to showing that

[ L1 t=£(® | = | 1] 1dG(DaF(x)>0.

Note that, since the median of ¢, is zero,
0 0
fR | t] dG(t)=—f_°oth(t)+f0 tdG(D).
Next, consider the integral fR | t— f($) | dG(¥).Observe that, if f.(@), then
fe) o
J =A@ 1de= [ (= 0dGh+ [, (1= F()dG(1

0 oo P
=— [ @G+ [ 1G(D+2 [ (78— DdG(1).

From previous result and A3, we have the fact that
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fe)
JLl s | =1 t11d6=2 [ (7:() - DdG(H>0.

Likewise, if £,(#)<0,

0
JU =5 | = 1116 =2 (t=()d6(5>0,
Due to A4, we have the fact that

[ LI t=£(® | = | 1 1dG(9dF(x)>0. [

3. Normality

In this section, we will study the asymptotic behavior of 55:,:\/71( 5;— 6,). We will state the

condition which is needed to show the property of normality.

>3.1. Assumptions and main results

Assumption B

Bl. The function v Ax,#)is continuous on XX & and || vAx, & | < k(x) for all x and 6,
where % is square integrable w.r.t. F(x) on X.

B2. W(4,) is positive definite.

Remark. According to Jennrich (1969),
(i) V,(6) converges uniformly to V(8), due to BIl.

(1) V,(8) converges to V(8,) almost surely as | 6— 8,1 — 0 and n — oo,

Theorem 3.1. Under Assumption A and B, $:L=\/71( 5;— 6,)converges to Z in distribution

V(8,7 h.

which is p-variate normal vector having distribution N(0,

1
(22(0))°

The proof of Theorem 3.1 will be given in Section 32 and it is based on the following
lemmas. The main idea in proof of Theorem 3.1 can be described as follows: First, since we

showed that 5; is bounded in probability in Section 2, without loss of generality we find the

differentiable function Q,(¢$) which is the approximating function of G,(¢) on S, where

S={¢ | ¢ < M for some M }. Secondly, we try to find that the minimizer ¢, of Q,(¢)
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converges to Z in distribution. Finally, we show that 5; lies close enough to ¢7 to share its

asymptotic behavior so that we can obtain the desired result.

3.2. Proof of Theorem 3.1

Let D(e)=HKe; < 0}—Ke; = 0}, where I(+) denotes the indicator function. Define

R(®)=le—Ffld) | — el —Dle)f{end W($)= ;D(E,-)f,(qb).Then we can write

G.(#)= EG(8)+ Wi($)+ 2Y(R.($)— ER()

Lemma 3.2. Assume that the model (1.1) satisfies Assumptions Al-A4 and Bl. Then

SUR(H— ER(H]~’ 0 on S.

2
Proof. It suffices to show that E [g[RZ-(qS)—ER,-( #)1| converges to 0 in order to prove

Lemma 3.2. Using the following inequality
|R() | < 21 /() [ K lel =[f(e) ]}

and the independence of R(¢#) and R;($) where ¢ and j are distinct, we have

2
H SR(H-ER(#]| = E217() | 1l el < |7 1T
< AREIAW | ER el < LA 1),

Note that
max 20,y Mmax 1 o Ta. o
where E lies in the interior of the line segment joining 6, and 8,+ ¢/ V. Since
(1/#) Z‘lvf(x,-, 6,)v "TAx;, Ggdpnverges to V(8,) as n — oo, by Wu(1981),
max j<i<.(1/0)VAx;, 6,)V Tf(x,-,?o):onverges to 0 as #—oo. Therefore, we know that
max 2
as #n — oo, and hence
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as n— . Define UMBD=EK|e| <t} We know that U#H—0 as ¢t— 0.

Finally, we know that

2
H SR~ ER(D]| < 4ZEIA(® | *Blll &1 <1 (&) |)

< 4UC 52, 1 F(8) 1)TV(6)¢
~0

as #n — o, which completes the proof. []

Lemma 3.3. Under Assumptions Al-A4 and Bl, we obtain

mE] 3 Le=f(@) | = el 1] = 208" V(o)gon s.

Proof. Assumptions Al and A2 imply that
Elle— @) | = lel1=[ (1 t=f(#) | = | t1)dCDAFR).

We know that
144)
SOl e=£@ | = 1811600 = 2 (f($)— DalDat

Because g(#) is continuous at (=0 and (f;(¢)— Dg(d is non-negative in ¢ (0, f{&)),
when | f(#) | is smaller enough, or equivalently, fi{(#) is contained in a neighborhood of 0, we

know that

fR[ | t=f{®) | — | t11dG(D) = &(0) £ (#)+ ol 7 (8)).

Finally, according to Assumption Bl and the fact that 90+—\};¢ converges to 6, as

n — o on S, we conclude that

limE S e~ A9 |~ el 1] =1im 3 [ (0) 72 (9aFG)
£(0)6"V(0.)¢

Lemma 3.4. Under Assumptions A and B , ZD(Q)]’,{ #) converges to Z'¢ in distribution

where Z* is p-variate normal random vector with mean O and covariance matrix V(4,) on S.

Proof. If we show that -\71—; ZD(S,')V TAx,,0,) converges to Z* in distribution, the required
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result follows from the fact that
o)) ZM&)}Z( $) = Tlnr[ ;D(e,-)v Tf,(x,-,E)}gé, where @, lies in the line segment
joining #, and 8,+ o @.
(i) VAx;, 8,) = VAx; 0,) as n — oo, due to Bl.
For the sake of convenience, let W,',=—\/17 gD(s,-)VTf(x,-, 8,). According to Cramer-Wold

device, we will show that , for any nonzero vector A= (A; s + + + 4,) T, W, A converges to
z.(univariate normal random variable) in distribution. Now if W, A satisfies Lindeberg condtion,

by Lindeberg-Feller Central Limit Theorem, we will have the fact that W, A converges to z.

in distribution. Finally, to show that the Lindeberg condition holds, let a,= ﬁ; A ,-aa—e Ax: 60,)
= j

and T;= %na,D(ez-). Then W, A= 27',-. Let H; be the distribution function of 7. From the
~
definition of 7, we know that 7T is independent and E(7,)=0 and VarT,)= %Ea?( 00,

Set B4= Var{ W, A). For any 7>0,
hm, B 12; f(r T.| 2B, T) dH (x)

~ lim - STELTH()| 711 >7B,)]

po ooB2 B
) 2
= lim#* E| d*D(¢) 1 a; D(e) { >\ i‘rE—aL
n->0 Eaz 1= \/7’2 1= n

< lim—‘l_ E[agDz(s,-)f( | D(e)) | >77Taxw1—|7-|_ 2 Ea%)]

e i‘Ea? =
— N 2
AR

2
~“ Ea; _ V- Var{T)

max | ¢;|  max | q;]

3 .L : . =
lg{{}o B zgf(lT,IZﬂB..)T? dH{x) = 0.

Since diverges to ©o,
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Thus Lindeberg condition holds. Moreover, we obtain

2
2 _ a ‘
E(Z,' - E[,= Aj 36] f(xn 60)

= ATwe,) A O

We finally find the approximating function, @,(¢) to G,(#) such that

G.d) = Q&) + 7,(¢) where y,(¢) =0 on S. 3.1)
Then we can define Q,(@) as

Q) = HOBTV0)$ + = 2 D(e)VSx, 68

Proof of Theorem 3.1. Let &, be minimizer of Q,(#). Note that &,=[&,— é,1+ &n.
The theorem will be proved if we show that

(i) &, converges to Z in distribution.
(i) ¢, — &, converges to zero in probability.

To (i), we can find the minimizer of @,(¢), by taking the gradient and setting it equal to 0
VQ.(8) = 26DV(6)$ + = S De)VAx.0) = 0.
Solving above equation, we can find that the minimizer &, of @Q,(®) is

] 1
ORI gp(e,-)vf(xi, 6,).

In Lemma 34. we showed that (1/Vn) 2-_‘1D(E,<)Vf(x,-, 8,) converges to Z' which is p
-variate normal random vector in distribution with mean 0 and covariance matrix V(6,). Hence

gﬁ converges to Z in distribution which is p-variate normal random vector with mean O and

1

covariance matrix —————— V(68,) "!. Now, we will show that Q,(¢) has unique minimizer.

(22(0))*
f ¢, + ¢y we get (¢,— )LV Qu(81)— vV Q,($)] = 28(0)($1— bo) V() (b1 — ¢2).

Since g(0) is positive and V(8,) is positive definite, @,(@$) is strictly convex . It guarantees
uniqueness of 55: From uniqueness and the fact that 65\; converges In distribution, it is
bounded in probability. Hence, with high probability, &5;6 S.

To show (ii), we will prove that for every >0, P(| b, — &,1>8 — 0 as n— . To
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prove, first we rewrite (1/Vn) E;D(si)v Ax,, 6,) in terms of the minimizer &, of Q,(#),

that is, (1Y) 2}DXe)VAx; 0) = —28(0)V(6) 5,
Using the fact that 2x7v= | x|+ |y %= lx—y | % we can rewrite Q,(¢) as

QP = g0Xd— &) V(ONd— &) — 20V, V(6,) &,
Define the closed ball, B(@,,8) which is centered at ¢, with radius & . Now let us examine

the behavior of G,(#) outside B(¢,, d). Suppose that ¢ = &, + af with a>d and B is a

px 1 unit vector. Define ¢ to be the boundary point of B{(¢,, 8 lying on the segment from

é, to ¢ that is, ¢ = ,+88 Put & ,= ;léps I 7,.(#) | . Obviously, &, —?0. The

convexity of ,(@#) implies

209 + 1-2)0(8) = Q.49
> g(0)8°BTV(6,)8 — 2(0)$1V(6,) &,
> g(0)8*BV(6,)8 + Qué) .

Rewrite this as
0.8 — 2.8 = 0FBTVIE
implying that
Q) = (L) Ee0ETV 8B + Qu(&).
Using formula (4) and definition of 2 ,

Gu9) = asg(0)B"V(8)8 — 28, + G.(&,).

We notice that the last expression is independent of ¢. Therefore

inf T _ 5
” ¢—($\;” >a Gn(¢) = [0’88(0):8 V(go)ﬁ ZAn] + Gn(¢n)

We already knew that 4, —?0, and V(4,) is positive definite, and @8g(0) is positive. Hence,

for sufficiently large n, 24, < adg(0)8TV(8,)B. Therefore,

inf N
lo—ad.ss CHP = Galdn)

This means that the minimizer &, of G,(@) cannot be any ¢ such that || ¢— @, > &

for sufficiently large #n. Hence given any & > 0, with probability tending to 1,
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| #,— &, < 8 for sufficiently large #. This is the desired result. The proof is finished. [

For the applications of the Theorem 2.1 and Theorem 3.1, we consider nonlinear regression
model with random regressor.

Example 3.1. We consider v; — 71’_%'627+61' , where =1(0,,8,)e0=[1, a;]1x[1, a].

a,, a; <. Assume that {e;} are iid. random variable with distribution function G(x) for

with continuous probability density function g(x) such that g(0) > 0 and G(0) = l. And

2
assume that input variable {x,} is random sample with uniform distribution F(x) which has

probability density function

_ 1 on [0, 1]
Kx) = { 0 otherwise

of _ 1 af _ i
360, (O,+ G,x)% 30y (6, + Gyx)*

[ vAx, & < h(x) where h(x) = \ —(1‘3—7)4 is square integrable. Hence V,(6)

Partial derivatives are continuous in {x, ) and

converges to V(&) where

— 1 _x
o) = (‘91+ 9296)4 dF(x) f (91+ 52x)4 dF(x)
B 2
—x X
f (6,+ 02x)4 dF(x) f (6,+ 52x)4 dF(x)
For a nonzero vector ¢ = (c¢; ¢y),

1 x
[ dr(w) [ —7 aF(x)
cV(OcT = (¢; ¢) (614 6,2) (61t 0p) ( ‘1 )

x x* Co
J (6, + 6,° F J (6, + 00" T
. C1+C2x 2
_ f( *’—(01+92x>2) dF(x) > 0.

Hence V(6) is positive definite. Obviously, the regression function satisfies the assumptions of

the previous theorem. Hence Li-estimator &, converges to @, in probability at the rate of

%n and Va(8,— 6,) has asymptotically normal distribution.[]
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