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for the Multivariate Normal Mean
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Abstract

In this paper, we consider a comparable study on three Bayes procedures for the
multivariate normal mean estimation problem. In specific, we consider hierarchical
Bayes, empirical Bayes, and robust Bayes estimators for the normal means. Then
three procedures are compared in terms of the four comparison criteria (i.e.,, Average
Relative Bias (ARB), Average Squared Relative Bias (ASRB), Average Absolute Bias
(AAB), Average Squared Deviation (ASD)) using the real data set.

1. Introduction

It is apparent that both the empirical Bayes (EB) and the hierarchical Bayes (HB)
procedures recognize the uncertainty in the prior information. Whereas the HB procedure
models the uncertainty in the prior information by assigning a distribution (often
noninformative or improper) to the hyperparameters, the EB procedure attempts to estimate
the unknown hyperparameters, typically by some classical method such as method of
moments, method of maximum likelihood, etc., and use the resulting estimated priors of the
parameters for inferential purposes.

In the context of point estimation, both methods often lead to comparable results. However,
when it comes to the question of measuring the standard errors associated with those
estimators, the HB method has a clear edge over a naive EB method. EB theory by itself
does not indicate how to incorporate the hyperparameter estimation error in the analysis. The
HB analysis incorporates such errors automatically and hence is generally more reasonable of
the approaches. Also, there are no clear cut measures of standard errors associated with EB
point estimators. But the same is not true with HB estimators. To be specific, if one
estimates the parameter of interest by its posterior mean, then a very natural estimate of the
risk associated with this estimator is its posterior variance. Estimates of the standard errors
associated with EB point estimators usually need an ingenious approximation (see, e.g., Morris
(1983a,b)), whereas the posterior variances associated with the HB estimators, though often
complicated, can be found exactly. For more detailed discussion, one may refer to Lindley and
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Smith (1972), Casella (1985), Berger (1985) and Ghosh (1992).

The subjective Bayesian approach has been frequently criticized on the ground that it
presumes an ability to completely and accurately quantify subjective information in terms of a
single prior distribution. Given the common and unavoidable practical limitations on factors
such as available prior elicitation techniques and time, it is rather unrealistic to be able to
quantify prior information in terms of one distribution with complete accuracy. In view of this
difficulty in prior elicitation, there has long been a robust Bayesian (RB) view point that
assumes only that subjective information can be quantified only in terms of a class I' of prior
distributions. These general ideas can be found in Good (1965), and more recently in Berger
(1984, 1985, 1990).

In this paper, we consider the comparable HB, EB, and RB estimators for the normal
means. (See, e.g.,, Casella and Berger (1990), p.508). Then three procedures are compared in
terms of the four comparison criteria (i.e., Average Relative Bias (ARB), Average Squared
Relative Bias (ASRB), Average Absolute Bias (AAB), Average Squared Deviation (ASD))
using the famous baseball data of Efron and Morris (1975).

The outline of the remaining sections is as follows. In Section 2, we review the HB and EB
estimators for the multivariate normal mean.

In Section 3, we provide comparable RB estimators for the normal means using the ¢
-contamination class of priors where the contamination class includes all unimodal
distributions..

In Section 4, we illustrate the three procedures obtained from Section 2 and Section 3 with
baseball data, and we compare these estimators in terms of the four comparison criteria.

2. HB and EB Estimators

In order to derive HB estimators for the normal means estimation problem, we consider the
following hierarchical model.

I. Conditional on 6,---,6, ¢ and 2, let Yy,--,Y, be independently distributed with
Y, ~ N6, &), i=1,- k where the ¢ is known positive constant;
II. Conditional on x and & 6,0, are independently distributed with 6, ~ N (g, 9,
i=1,k
IIl. Marginally z and ¢* are independent with x~ uniform(—oo, ) and 2 ~ uniform (0, ).
We shall use the notations y=(y,,,y)" and 6=(6;,, 007

Then the joint pdf of y, 6, ¢ and 7 is given by

Wy, 0,u,7) o (¥>§exp[—%[§ im0+ L 3 o-w)] 2.1

Now, integrating with respect to g, it follows from (2.1) that the joint pdf of y, 8 and 7 is
given by
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_ (k1)
Ky, 0.0 < (&) 2 exp[ Oz(e D 'yTD(6- D'y
(2.2)

X exp[— 2—1‘32 Z:l (yi— })2]

Ji

where D= I,d—%j( Ik_T)’ D '=(1-B) IL,+Bt" ' J,, and B=d/(+1}). Here we

use usual notations 1,=(1,--,1)7, I,= Diag{l,--,1} and Ji= 1; lkT. Then the posterior

distribution of @ given y and > is a k-variate normal distribution

N, [(1=-By+By 1, #(1—B) I,+dBt ' J)I. (2.3)
Also, integrating with respect to 8 in (2.2), one gets the joint pdf of y and 7% given by
A=l B B
ny,7) =« B ? exp(—762 >, (vi— y)z). (2.4)

Since B=d*/(d+ ), it follows from (2.4) that
k=5

pB < B e =L B 97,

Hence, the posterior mean and variance are given by

E(dy)=y—EBy)(y—y 1, (2.5)
and
Var( 8y)= o Li— PEBy)( Li—k™' J) + Var(By)(y—y 1)(y— vy 1) (2.6)
where
folBk—z&exp(— B, f(yi—_y)Q)dB
EBly)=— %3 (2.7
fOB 2 exp( 2(3’,—31) )dB
folB El exp( 2(3}z ) )dB
E(B|y)=—7=% (2.8)
foB 2 exp( é‘(yz-—y) )dB
and
Var( B y) = E(B| ) — (E(B y))* (2.9)

In order to develop a closed form solution to HB point estimates and posterior variances
given by (2.5) and (2.6), Morris (1983b) suggested approximations to (2.7) and (2.8) involving
replacement of the integral over B in (0, 1) by the integral over B in (0, o). But we will
compute (2.7) and (2.8) using Gauss-Legendre quadrature for an illustration in Section 3.

For the EB analysis, we consider the same model, except that the hyperprior distributions
are not considered. Instead, we estimate the hyperparameters ¢ and 7% based on the marginal
distribution of y.

To derive the posterior distribution of 8 for given y, we start with the joint pdf of y and @
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given by
py, 0 =< sz1[ exp[ 'Lyé;‘;e’—)z ]717 exp[ :—(%i]} (2.10)

Using B=d/(+7%), the usual square completion technique on the sum of the two
exponents in (2.10) leads to

o< 1 B (6,—(1—B) yi_Bﬂ)z
y,0) ,Ijl VOB VZ+ e"p[ 26°(1— B) ] (211
=t
Xe”% ﬂ&+¢”]

From (2.11) the posterior distribution of 8 given y is then
NJI(1—By+Bu 1, ¢(1-B Il (2.12)
Also, the marginal density of y; is derived by

—(yi— )2
m(y) = (yim ) ]

‘/271'(;2—%—2'2) exp[ AL+ 1)
Thus the joint marginal density of y is given by N,(x 14, #B~' I,). Hence, we can estimate
u and ©* based on m( ylu, ).

One could then pretend that the @; are independently N(ZZ?), and proceed with a
Bayesian analysis. This indeed works well £ is large. For small or moderate %, however,

such an analysis leaves something to be desired, since it ignores the fact that # and ©° were
estimated. The errors undoubtedly introduced in the hyperparameter estimation will not be
reflected in any of the conclusions. This is indeed a general problem with the EB Approach,
and will leads us to recommend the HB approach when £ is small or moderate.

However, Morris (1983a,b) has developed EB approximations to the HB answers which do

take into account the uncertainty in z and 7. These approximations can best be described in

EB terms, as providing an estimated posterior distribution.
The estimates Morris (1983a) suggests for E(8)y) and Var(6]y) are (when k>4)

E(6}y)=(1— B)y;+ Bu (2.13)
and
Var o )= A(1— 2 B+ 2 B (55 (2.14)
where
n=y
B= (k=3 Ozf? (2.15)
7= max{ 0, (kl—l) st =) (2.16)

and
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St= Z}l(y,-—})z.

In way of explanation, 2 is just a slight modification of 2 in (2.16) and the factor
(k—3)/(k—1) in (2.15) has to do with adjusting for the error in the estimation of 7, and

(F—1)/k in (2.14) and the last term in (2.14) have to do with the error in estimating .
We will compute (2.13) and (2.14) for the illustration in Section 3.

3. RB Estimators

The hierarchical model here is similar to the one in Section 2, except that now the
distribution of 7% has the e-contamination class of priors (c.f. Berger and Berliner (1986)),
namely

I'={h: h=010-ahteq, =& (3.1)
where, 0<e<l1 is given, hy is the inverse gamma distribution with pdf

B

W)= gy pETe oo,

denoted by IG(a, By),and @ is the class of all unimodal distributions with the same mode 7

as that of £

Let Aylr*)= ffp( yl Op( Ap, P2 p()ded@. We denote by m(ylk) the marginal distribution

of y with respect to the prior A4, namely
m( 3l = [ A yleHnasd).
For hel, we get
m( y1h) = (1= m( ylhy) +em( yla).
Our objective is to choose the ML-II prior % which maximizes m(y|%) over I This amounts

to maximization of m(ylg) over q=Q. Using the representation of each ¢=@ as a mixture of
uniform densities, the ML-II prior is given by

A =(1—hy(P)+eq(r) (3.2)
where ¢ is uniform (73, 5+ Zz), z being the solution of the equation

1o 2
Ayl==1 [, fsleha? (33)

and 75 is the unique mode of ho(7%) (i.e.,iB=ap/(By+1)). In fact,

_ kol
o) « (@A) F exn(—§ Ao B6i- DY) (3.4

Now, we find the solution Z to the equation
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Asi=1 [ Ksldae,

and so
A 312 +2-% A yl2) = Ayl +2). 35)
Here,
N2 N2
4 B o [_ b1 gl(y,; y) 1 gl(yif ¥)
gz 2= (24 7) % Tt A 1P T 2 T
Hence, from (3.5) one gets
| 23 3? S (5, 9
(Z+62) 2 1— k—1 P4 + =1 : exp |— =1
2 z+/d 2(z+ o*)* z+o  2z+09)

k=l
=(z+2+6) % exp

3 (5.9’

z+0 2z++dd)

. (3.6)

So we can find the solution 2 to the equation (3.6).
Then we have the following HB model based on ML-II prior:

I. Conditional on &, - ,8; p¢ and 2

v 24 N(g; D (=1,

II. Conditional on x and %,

6, 24 N(u, D (i=1,,4)
III. Marginally x« and 7 are independent with z# ~ uniform(— o0, ) and
R =(1—hy(*)+eq(?). where q(%) ~ uniform (7}, 55+ 2).
From Section 2, recall that the posterior distribution of & given y and 2 is
N,((1—B) y+By 1,4, ?(0—B) L+dBk ™" J).
Also, recall that the posterior mean and the posterior variance are given by
E(6ly) = y— E(Bly)(y—y 1))

and
Var( 8l y)= 0 ( L— E(B ) Li—k ™' J)+ VarlB y)(y— 3 1) (y—y 1) 7.
But in the RB setting we need

WY <(Z+0  exp -+ i B0 9 (A=) e )
% 1 (T2+UZ)_ :

RN
—_ 1 1 T 2___‘!_0_
<=9 gy ()% Zi 7 g(y, ¥ ) (3.7)

) b1 1
oo (-
=1
£ (2 ) 1 _1 )2
+ - (46 exp( s T2 Z:l(yz ¥)
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in order to calculate the above posterior mean and variance. Since B= A/ + %) (0< BL1),
it follows from (3.7) that

B y) o B (10— 1 @m T
Y B (HB-DP!
X exp (—‘é— ?IE Z‘.l(yi—})z- ;;B) (3.8)
k—1

+BRE @) ew (-1 D B0

Then the above posterior mean and variance can be obtained by computing FE(Bly) and

Var(Bly) based on (38). This is also one-dimensional integration problem and so we will
use Gauss-Legendre quadrature for an illustration in Section 3 with baseball data.

4. An Example

In this section, we will compare all the estimators discussed in Section 2 and Section 3
using the famous baseball data of Efron and Morris (1975). The data consist of the batting
averages of 18 major league players through their first 45 official at bats of the 1970 season.

Here the goal is to find which procedure gives closest estimates to the ‘true’ probability of
a hit, @, for each player's batting average over the remainder of the season using the data.

To begin, the binomial model is fitted to the 45 at-bats for each player i, but, to simplify
the computations, the binomial likelihood is approximated by a normal likelihood under the
arcsine transformation. The arcsin transformation is used to create normal random variables of

roughly unit variance for all values of the parameter g, that are not close to 0 or 1. That is,

the normal approximations for the binomial proportion under arcsin transformation give
At 0= T NGio, .
The HB, EB and RB estimates and their posterior standard deviations are obtained under
the normal model. In finding RB estimates, we have tried several cases for ag, By and €

and have reported the result using a,=10, f=1, e=.1 for our convinience. Table 3.1

provides the “truth” and three Bayes estimates and the standard errors associated with three
Bayes estimates.
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Table 3.1 Estimates of §; (standard error)

) 9;‘ /Bz‘,HB(sz',HB) P:’,EB(Si,EB) @i,RB(Si,RB)
1 346 .306(.0733) .290(.0737) 309(.0735)
2 .298 .299(.0731) .286(.0732) .302(.0733)
3 276 .292(.0729) .282(.0728) .295(.0731)
4 222 .285(.0728) 2770.0725) =287(.0729)
5 273 278(.0727) 273(.0723) .279(.0728)
6 270 278(.0727) 273(.0723) 279(.0728)
7 .263 271(.0726) 268(.0721) 272(.0728)
8 210 .264(.0726) .264(.0720) .264(.0727)
9 .269 .257(.0726) 259(.0721) 296(.0727)
10 | .230 .257(.0726) .259(.0721) 256(.0727)
11 264 .2490.0727) .254(.0722) .248(.0728)
12 256 .249(.0727) .254(.0722) .248(.0728)
13 303 .249(.0727) .254(.0722) .248(.0728)
14 | 264 .249(.0727) .254(.0722) .248(.0728)
15 | .226 .249(.0727) .254(.0722) .248(.0728)
16 | .285 242(.0728) .249(.0725) .240(.0729)
17 316 .234(.0729) .244(.0728) .232(.0731)
18 | .200 .226(.0731) .239(.0734) 223(.0734)

Now, we use the following four criteria to compare the different estimates. Let §; denote the
baseball players’ actual batting average for the remainder of the season. For any estimate

e=(e; -, e) T we compute the following four criteria:

average relative bias = (18) ~! ﬁ‘lﬁr— ell;
average squared relative bias = (18) ~! ﬁilﬁi— el? 67
average absolute bias= (18) ~! 21|8,~— el

average squared deviation= (18) ~! 21 (8;,—e)?

From Table 3.1, we can see that three Bayes estimates are quite similar to each other. But
Table 3.2 indicates that the EB estimates seems to be the best, but there is no second best
under all criteria for this data set. On the whole the differences are quite small. So we can
say that all three procedures are quite comparable.
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Table 3.2 A Comparison of Estimates For &; Under Four Different Criteria

Average Average Average Average

relative squared absolute squared

Estimate bias relative bias bias deviation

HB 1067394 0187807 0277576 0012784

EB 1019850 0178852 0263850 0011957

RB .1088814 0192212 0283835 0013140
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