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Bayesian Methods for Generalized Linear Models
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Abstract

Generalized linear models have various applications for data arising from many
kinds of statistical studies. Although the response variable is generally assumed to be
generated from a wide class of probability distributions, we focus on count data that
are most often analyzed using binomial models for proportions or poisson models for
rates. The methods and results presented here also apply to many other categorical
data models in general, due to the relationship between multinomial and poisson
sampling. The novelty of the approach suggested here is that all conditional
distributions can be specified directly so that straightforward Gibbs sampling is
possible. The prior distribution consists of two stages. We rely on a normal
nonconjugate prior at the first stage, and a vague prior for hyperparameters at the
second stage. The methods are demonstrated with an illustrative example using data
collected by Rosenkranz and Raftery(1994) concerning the number of hospital
admissions due to back pain in Washington state.

1. Introduction

The major impediment to the routine Bavesian implementation of generalized linear models
has been the calculation of high dimensional integrals. Before the advent of sampling based
methods for calculating marginal densities, possible solutions included numerical integration
techniques, such as those introduced by Naylor and Smith(1982), or analvtic approximations
and their improvements suggested by Tiermney and Kadane(1986) and Tierney, Kass, and
Kadane(1989). In addition to being quite accurate, application of analytic approximations based
on Laplace’'s method often provides insight into asymptotic properties of posterior inference. In
order to use Laplace’s method however, the log posterior must be dominated by a single
mode, and a second order Taylor series expansion must be evaluated at the maximum. Thus,
a difficult integral calculation is replaced by a much easier maximization. However, for high
dimensional problems even a maximization can be cumbersome.

With the introduction of sampling based methods such as those proposed by Gelfand and
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Smith(1990), Bayesian inference procedures changed dramatically. The idea is to simulate a
Markov chain that converges to a target or stationary distribution, which in Bayesian data
analysis 1s most often a posterior or predictive distribution. After the chain converges, a
sample, perhaps correlated, is essentially being drawn from the target distribution. Any
characteristics of the distribution can then be derived directly from the sample. Since the
introduction of the work by Gelfand and Smith, sampling based methods, now commonly
referred to as Markov Chain Monte Carlo(MCMC), have been applied to a wide variety of
statistical models with great success. Today, MCMC and its variants continue to be the focus
of much research activity.

The choice of a particular sampler depends on the problem under consideration. A sampler
that mixes well in one case may perform poorly in another. For each sampler there are
advantages and disadvantages. The amount of hterature related to MCMC is huge, and a
complete list of references is too large to enumerate here, but a good starting point includes
the work by Gelman et al.(1995), and Gilks et al.(1996). The two samplers most commonly
used today are the Metropolis and Gibbs samplers. The Metropolis sampler requires
specification of a candidate distribution, which in some sense should be close to the target.
Random draws are generated from the candidate and are accepted or rejected according to the
calculation of a jump probability. The Gibbs sampler, a special case of Metropolis, accepts
new candidates with probability one and is easy to implement, but requires the ability to
sample directly from various conditional distributions. Other samplers in common use include
the independence sampler(Tierney, 1994) and the hit-and-run sampler(Schmeiser and Chen,
1991).

Output from MCMC simulation should be monitored carefully. The model or the sampler
may require fine tuning in order to accelerate convergence, promote rapid mixing, or in the
case of Metropolis, improve acceptance rates. Model checking and ensuring propriety of
posterior distributions are important aspects of any Bayesian data analysis. A
reparameterization can also be useful for improving the efficiency of an MCMC sampler. Thus,
the trial and error nature of sampling based methods for Bayesian data modeling makes
software development a challenging task. One ambitious endeavor in this regard is BUGS
(Bayesian inference Using Gibbs Sampling) software developed by Spiegelhalter et al.(1996).

Bayesian calculations are usually more tractible when using conjugate priors. For binomial
and poisson likelihoods this requires consideration of the beta and gamma densities,
respectively. However, when making posterior and predictive inference, the hyperparameters
are embedded in gamma functions. While this is not entirely problematic, it does restrict the
choice of sampling methods available to the data analyst. By using a nonconjugate normal
prior at the first stage, and modifying the likelihood to match a normal distribution on a
suitably transformed scale, Bayesian data analysis of a generalized linear model becomes
equivalent to Bayesian data analysis of a normal linear model. At that point, all results of the
normal model become available. In addition, all conditional distributions can be specified and
sampled from directly so that straightforward Gibbs sampling is possible.
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Two issues concerning the methods presented here deserve explanation. First, modification
of the likelihood does not compromise propriety of the posterior since it coincides with a
normal likelihood on a transformed scale. Second, without loss of generality, we choose to
utilize the usual noninformative prior for hyperparameters commonly used In regression
models, assuming that the sample size is large relative to the number of parameters. For
those who prefer proper priors, or are attempting Bayesian analysis of more ambitious models
such as neural networks or mixture models, the extension to proper priors poses no difficulty
and can proceed according to the application.

In Section 2 the generalized linear model is reviewed. The Bayesian model is presented in
Section 3 and an approximation to the likelihood and the conditional distributions needed to
implement the Gibbs sampler are described. In Section 4 a data example is presented and
Section 5 concludes with a discussion.

2. Generalized Linear Models

We assume the reader is familiar with generalized linear models, hereafter referred to as
GLMs. This section will be brief and is presented to make terminology and notation precise in
the sections that follow. Good accounts of GLMs appear in Agresti(1990) and McCullagh and
Nelder(1989).

In the GLM framework, independent observations are available on the response variable

yT= (3,",¥n). The observations are assumed to be generated from an exponential
family of the form
yiai_ b( 91)

a($)

where 8; is called the natural parameter and ¢ is a scale parameter.

p(y; | 6, 8) =eXD{ + c(y,, ¢)} (2.1)

As in the normal linear model, the right side of a GLM is a linear function of explanatory

. T T .
variables  x; = (x3,"",x;) and parameters B = (8 --,8,) known as the linear

predictor

7= x,'T B. (2.2)

A monotonic and differentiable link function g relates the expectation g, of v, to the linear

predictor via

gu)=nm= x, B (2.3)

When @;,= 5; the function g is called the canonical link function. In the sections that follow

we will denote the contribution of a single observation to the likelihood by p=(y, | 7,), since
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7; is related to §; through g. Dependence on ¢ is suppressed since a scale parameter will

be introduced in the prior distribution of the Bayesian model in the next section.
In general, estimation for GLMs requires iterative methods and maximum likelihood

estimates of B can be calculated using adjusted dependent variable regression, a form of
iteratively reweighted least squares(IRLS). Model checking can be assessed with a likelihood
ratio statistic called the deviance or Pearson’s chi-square statistic. Qutliers can be detected
using the individual components of the deviance or chi-square statistics.

3. The Bayesian Model

A hierarchical model with a two stage prior distribution is described for Bayesian data
analysis of GLMs. At the first stage, the linear predictor 7, is assigned a normal distribution

in order to be compatible with the normal linear model. The second stage prior is given the
usual noninformative prior. Formally, the model is

v:| 7; ~ (any exponential family) i=1,---, N
71 B,0 ~ N, )
n=glpu)=2A+e, &~ NO,6®, A = x, B
p( B, < ()"

By any exponential family we mean normal, binomial, poisson, or gamma response variables.
The methods are not applicable, for example, for binary or multinomial ordered response
models (see, for example, Albert and Chib(1993) for Bayesian analysis of these models). If a
likelihood already contains a scale parameter, such as the normal or gamma, it should be set

to a constant since ¢ is included in the prior. Without loss of generality, this constant can

be set to one. It is understood that ¢=1 for binomial and poisson likelihoods.
Under these assumptions, the joint posterior distribution is

#n. 8.6 1 9)oc(o") ~ Y I TIasi | m)lexw| — 5k Sni—2)7] @.1)
As in Bayesian analysis of the normal linear model, the following results are immediate
Bln.dy~ N(BAX O™, B=(X"X)"'x"g
a9y~ Inv-(N-p, ), 52=N+p( 71— X B (71— X B)
where X is the NXp design matrix with rows x,, and Inv—xz(u,sz) denotes the scaled

inverse—chi-square distribution with scale s* and degrees of freedom v. Thus, we can sample
directly from two of the three distributions necessary to implement Gibbs sampling. The next

subsection describes a method to sample from 7| 8, o ,y which completes the specification.
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3.1 Approximating the Likelihood

The likelihood will now be matched to a normal distribution with respect to 7, on the scale
of the link function. Let p(7,) denote the log of p(y;| 7;) and consider a second order Taylor

series expansion about the value ?71- that maximizes p(7;). Then

Kn) =~ 07) = 5 K)(ni— 7)°
where

azp( 771)
2
8771' 9= 7

denotes the observed information evaluated at the maximum. Now, replace p(v; | 7, with

Kp)=-

exp[p(7 )] and the joint posterior distribution can be written as

~(N2+1D) 1 (g,— 20° | (=4)° 5
P, 8.6 e ()~ Vexp = (2 AT 4 2] 52)
After collecting terms and completing the square
7.1 B,y ~ N(6,8%) (3.3)
where
0;= L At 17, 1 g
—— o= (1)
?+I( 771‘)

Note that the mean 6, is a weighted average of the linear predictor A, in the prior
distribution and the sample data Am-. The maximum ?7,- is simply the link function evaluated
at the data. For example, if ;|7 ~ binomial (%;,p,) and logit (p)=7, then 7, is the

sample logit. If v,=0 or =n,=y; the empirical logit can be used

a v:+1/2
If y;| 7~ poisson{(x;) and logu;= 7, then 7,= logy; If ;=0 then
7,= log (y,+1/2) (3.5)

can be used. Thus, in some cases it may be necessary to make small adjustments to the data
to ensure that the link function is defined at all values. This presents no difficulty since a
small modification can actually improve the approximation. This assertion will be made clear
in the data example.
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3.2 Using the Gibbs Sampler

Using the approximation presented above, all conditionals are available as standard
distributions and the following sampling scheme is presented to implement the Gibbs sampler.

Specify starting values B, 0‘02 ;
Draw 7| B, 62,y~N(9,-'8,»2)
Draw & | 7,y~ Inv—x*(N—p, s>
Draw 8| n,oz,y~Np(//\3, AXTX)™hH

Repeat for the desired number of iterations.

Experience has shown this sampler to perform well for various data problems. Very little

burn-in is required even when poor starting values are chosen for 8 and &
4. Data Example: A Poisson Model for Rates

Rosenkranz and Raftery(1994) provide data concerning the number of hospital admissions for
the medical treatment of back pain by county size (exposure) for the thirty-nine counties of
Washington state during calendar year 1989. A question of interest is whether hospital
admission rates are more related to availability of medical resources or to actual need.
Rosenkranz and Raftery showed that admission rates were more related to number of
hospitals per 10,000 residents than to the proportion of the population sixty-five years of age
or older, suggesting that rates are more related to availability of medical resources. We use
these data to fit a poisson model with a log link, using number of hospitals per 10,000
residents as a covariate,

Let y; denote the number of admissions due to back pain for county i Let t{exposure) be

the number of adult residents ( = 20 years of age), and x; the number of hospitals per

10,000 residents. Under the framework established in Section 3

v; | t;, p;~ Poisson (t;e”)
2; | Bo, Br, @ ~ N(A; D), A= By+ Bux;
ﬁ(ﬁoﬁhdz)‘x (%) "L

In order to compare the normal approximation to the poisson likelihood, the exact joint
posterior distribution is
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p(n, By, By, & W< () '(N/2+”exp[ glym,-— tie” — -2107'(”"_ A) 2] 4.1)

Note that the contribution from the likelihood with respect to 7, resembles an extreme value
distribution(if y,= t;= 1 the likelihood is a standard extreme value distribution). An overlay is
shown in Figure 1 that compares the exact likelihood with the normal approximation when
v;=5 and ¢=10. The exact likelihood, sharing properties with the extreme value

distribution, i1s skewed slightly to the left. As asserted in Section 3, a small modification to
the data can improve the normal approximation by shifting the mean to the left and
increasing the variance.

Figure 1. Overlay of normal approximation (dotted line) and exact likelihood

After making the approximation, the joint posterior distribution is

(m, By, By, & | M) o< () ‘(N/Z“Ll)exp[——é(ﬁl (7, l()l‘g/iy,/t,)) + (77’62/1?) )]

For the hospital data all y;> 0 and an adjustment to the data is not necessary. If any y,=0

we recommend a small adjustment such as

. i+
D= Iog(l—t_lﬁ)~ ¢l 4.2)
~1-1 Co

where ¢20 and ¢y =>1. The constants ¢; and ¢, represent location and scale parameters,

respectively. Since 1/2 is added to y;, in the case that any y,=0, the constant ¢; has the
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effect of shifting the distribution to its original location. The constant ¢4 can be chosen to

increase the variance.

One goal of this work is to provide a method to perform Bayesian data analysis of GLMs
that requires modest programming effort by the data analyst. The conditionals needed to
implement the Gibbs sampler are standard distributions and can be sampled from directly, We
ran a Markov chain with 1000 iterations. Index plots of samples drawn from the posterior
distributions of the hyperparameters appear in Figures 2, 3, and 4. These plots represent
correlated sample drawn from the posterior distributions. Point estimates are calculated from
the means of these samples. Burn-in is not a significant issue in this example. The fitted
regression line along with the data are shown in Figure 5. One observation appears as an
outlier in the design space, but it is not influential since very little exposure is associated
with it.

2.1 2.2 2.3 2.4

2
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Figure 2. Index Plot of 1000 observations drawn from Byly with E[ £ | v1=2.227

a loa 200 300 400 500 600 700 800 a00 1e+03

Figure 3. Index Plot of 1000 observations drawn from Bly with E[ 3, | ¥y] =0.368
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Figure 4. Index Plot of 1000 observations drawn from ¢’y with E[ & | y]1=0.077
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Figure 5. Scatter plot of data and fitted regression line

5. Discussion

A general method for Bayesian data analysis of GLMs has been presented that uses a
normal approximation to the likelihood on the scale of the link function. A normal distribution
then becomes the conjugate prior and all normal model theory becomes available. We choose
the usual noninformative hyperprior for brevity, but there is no need to do so. The extension
to a proper prior is straightforward.

Note that in Equation (3.2) it is possible to marginalize over 7 to obtain the posterior
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distribution of the hyperparameters. We choose not to do so to avoid the unequal variance
case since the marginal distribution of y on the transformed scale, conditional on the
hyperparameters, becomes normal with nonconstant variance. In addition, by sampling from the

conditional of 7, a sample is generated from the linear predictor and a simple transformation
provides case-level samples from GLM parameters.

Finally, this work addresses Bayesian methods for the class of GLMs, but the methods
presented here can be applied very generally outside this class. Future work is planned in that
direction.
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