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Abstract

The covaniance process of two martingales provides a useful tool to capture the
dependence structure for paired censored data. In this paper, it is applied to modify
the variances of weighted logrank tests in order to take account of dependence
between paired subjects. In the process of modification, a 'variance correction term’ is
introduced. Some variance estimators based on separate samples are considered
together. Performance of the estimators are compared through simulation studies.
Several independence tests for bivariate survival data are also proposed, which are
naturally reduced from the weighted logrank tests accomodating dependence structure.
Simulation studies are carried out to compare the independence tests. Both the
weighted logrank tests and the independence tests are illustrated by an example,

1. Introduction

In a clinical tnal, an experimenter might often encounter paired subjects such as twins and
a pair of eyes of a patient. The paired subjects produce censored paired survival times with
dependence structure. For example, the survival times (measured in days) of closely-matched
and poorly-matched skin grafts on each patient are found in the well known skin-graft data
(Bachelor and Hackett, 1970). In analysing such a kind of data, testing equality of two
marginal survival functions as well as testing independence of survival times is, of course,
included in our primary concerns.

When two survival times are independent, lots of procedures to test equality of survival
functions have been developed. Especially, in the presence of censoring, the class of weighted
logrank tests has been highlighted for a couple of decades because it contains many important
tests both in practice and in theory. It includes the logrank test (Mantel and Haenszel, 1959),
Gehan-Wilcoxon test (Gehan, 1965), Tarone-Ware test (Tarone and Ware, 1977),
Prentice-Wilcoxon test (Prentice, 1978), and the class of tests with Harrington and Fleming
(1982) weights. Properties and recent developments of weighted logrank tests are presented in,
for example, Fleming and Harrington (1991), and Klein and Moeschberger (1997).
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To accomodate dependence structure for correlated survival data, the usual one-sample and
two-sample tests for independent samples have been generalized through modifying variances
of the test statistics. Among others, Woolson and Lachenbruch (1980), and Dabrowska (1990)
generalized the signed rank test. Wei (1980), O'Brien and Fleming (1987), and Dabrowska
(1989) proposed to use modified Gehan-Wilcoxon test, Prentice-Wilcoxon test and logrank test,
respectively. Due to the complexity caused by the dependence structure, most of the above
tests were considered under the assumption of univariate censoring and/or the location model.
However, Jung (1998) recently presented a simple variance estimator without these
assumptions using martingale representation for the weighted logrank tests.

In this paper, various modifications are considered for the variance estimators of weighted
logrank tests. As a factor producing different estimators, consider two sampling schemes,
independent sample case and dependent sample case. For each sampling scheme, two simple
estimation methods are used. One is replacing the cumulative hazards and covariance process
with their usual consistent estimators, the other is a kind of moment estimating method based
on the martingale residuals, which was used in Jung (1998). Estimators based on both
separate samples and a combined sample are included in estimating the cumulative hazards
and covariance process. In addition, estimators with a ‘variance correction term’ are
introduced. All estimators are compared through simulation studies.

Comparing the estimators for a paired sample with those for independence samples, a couple
of independence tests are naturally derived from the weighted logrank tests. For the
indépendence tests of survival times, several semiparametric and nonparametric procedures are
available from the literature. A method based on the frailty model was introduced by Clayton
(1978) and further developed by Oakes (1982). On the other hand, Hsu and Prentice (1996) and
Shih and Louis (1996) proposed the tests based on the covariance process of two martingale
residuals (Fleming and Harrington, 1991, and Prentice and Cai, 1992).

Besides two independence tests reduced from the weighted logrank tests, we also mention a
modification of Shih and Louis (1996) test by means of a ’'variance correction term’, and carry
out a simulation to compare the proposed tests with the tests of Hsu and Prentice (1996) and
Shih and Louis (1996). As an illustration, the skin graft data is analysed using both equality
tests of marginal survival functions and independence tests.

2. Test Statistics

For i=1,--,n, let {(Xy,8),),(Xy, &)} be n independent observations of {(X;.d.),(X,, &)},
where X,=T,A\C, (k=1,2) for the survival time T, and the censoring time C, and
8,=I1(X,= T, denotes the censoring indicator. We assume that 7, and C, are independent.

Before describing the hypotheses of interest and test statistics, it seems useful to express
first the covariance process and its estimator in the martingale framework. As shown in

Fleming and Harrington (1991), the covariance process of paired survival times (T, T,) is
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defined by
A(a’tl,dtz)zE{Ml(dtl)Mg(dtg) | letl, T22t2},
where MH=N,(H— fot Y. (s)dA(s) (£=1,2) is the marginal martingale,

N(f)=KX,<t 8,=1) is the counting process, Y ()=IX,=9 is the size of the risk set at
time t, and A, denotes the cumulative hazard function of T,.

A simple moment estimator of the covariance process can be obtained by replacing the
marginal martingales with martingale residuals. Prentice and Cai (1992) presented a consistent
estimator A(dt, dt,) of A(dt,dt) as

Aldty, dty) = Y(t, 1)} ,-e§ Y M (dt)) My(dty)
if (#,t) belongs to the grid formed by the observed failure times and 0 otherwise. In this
expression, R(#,t) and Y(#,%) denote the risk set at time (# ,# ) and the size of

R(t, 1), respectively, and the martingale residuals M; ; are defined by

¢ . . t
M;,-(t)szi(t)—fo V() dA(s). Here Ak(t)zon;l(s)de(s) is the wusual Nelson-Aalen

(Nelson, 1969) estimator of A,(#) where Nk(t)zz;Nk,(t) and Yk(t)zngz(t). This estimator

A\(dtl,dtz) is used to construct test statistics for paired survival data in the next sections.

2.1 Logrank test

In this subsection, we are interested in testing the null hypothesis,
HO : Al(t) — Az(t) for all Z‘ZO,

and we consider the usual two sample weighted logrank statistics V with a weight function

W 1),
Vel fom WA () — d T D).

Note that WH=»"'Vi(OY,(D/{YV(D+ Y,(D} for the logrank test, » *Y(HY,(d) for
Gehan-Wilcoxon test, and WO =18 )Y (A Y,(D/{ Y () + Y,(D} for Prentice-Wilcoxon test.

Here S(¢) is the Kaplan-Meier (1958) estimator of the common survival function under the
null hypothesis.
Under H,, the logrank statistic V can be written as a sum of independent stochastic

integrals,
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V= n_l/z lg(&"u“‘ 52,'),

where Ek’:fo aWH/ Y (HdM (D for k=1,2. Since V is also a martingale, from the

standard martingale central limit theorem, it follows that V converges in distribution to a

normal with mean 0 and variance 02,
¢ = EL [ wWOU(L— 0,(0)dA (D] ¥, () +(1- AA,()d A V(D)
—2f0mf0wn2W(t1)W(t2)Y(t1,l‘z)/{ Yi(8) Yol )Y A(dt, dty)].

1

Here dA()=A)— A+ ) is the correction term for discontinuity of the underlying
distribution. Therefore, when there exists a consistent estimator ¢ of ¢, the standard normal
tests can be applied to test H, based on the statistic V/o. See Fleming and Harrington

(1991) for more details about martingale theory including martingale central limit theorem.
In this setting, the performance of the test procedure may depend heavily on the variance

estimator o, and there are several factors which produce different estimators. As such a
factor, first, consider two sampling schemes, independent sample case and dependent sample
case. Since the second term of the right hand side of (1) is dropped if 7, and T, are
independent, we can use the first term of (1) as an asymptotic variance in the independent
sample case. For each sampling scheme, a simple way to get a consistent estimator of ¢ is

substituting A,;, A, and A in (1) with their consistent estimators, that is, the Nelson-Aalen

estimator A, and A, for A, and A, and the Prentice and Cai (1992) estimator A for A.

To access the second method, note that o‘zzn“lflE(el,-—EZi)z which is reduced to
P

o)‘=n“li“E(Ef,-+ €3) in the independent sample case because V is a sum of independent

&

variables. Hence we obtain another estimator of ¢ by simply calculating a moment estimator

n! 2( e~ €)% where Aek,:fo nW D/ Y8 dMy(D. In the independent sample case, we use
“

21 2 + &0). A few applications of this method are found in Lam and Longnecker
&

(1983) for constructing Wilcoxon test in the absence of censoring, in O'Brien and Fleming
(1987) and Jung (1998) for the logrank tests, and in Hsu and Prentice (1996) for the
independence test.

When constructing a consistent estimator of ¢ along these two methods, we are allowed to
use both of the combined sample estimator A and separate sample estimators 24, and A, for
A, and A, since these estimators are asymptotically equivalent under the null hypothesis.

This is the same as that we can use both the pooled variance and separate variances in the
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paired t-test. When the combined sample estimator is used, it should be noted that A must
be calculated on each grid point (7%, T;) formed by uncensored failure times T; and 7; in the
combined sample.

The last factor is related to discontinuity correction term 4dA, in (1). As an estimator of

discontinuity correction term 44, Fleming and Harrington (1991) recommended to use

4 A" ={4N,+ dN,—1}/{Y,+ Y,—1} in the combined sample, or 4 A, ={dN,~1}/{Y,~1} in

separate samples, only when discontinuity exists. However, it is shown in Appendix that
o= n-lg = fo R WD Y4 (1) (1— AA(D) d AP, 2

. ~ 2 . . .
where AA,= 4N,/ Y, and dA,=dN,/ Y, Since o, of (2) is a consistent estimator of
corresponding population variance Ui, it seems possible that we include a 'variance correction

term’, 1—dA ), or 1—A4A(H, in constructing a consistent estimator of ¢ given by (1)

regardless of continuity of the underlying distribution. The 'variance correction terms’ are less
than the discontinuity correction terms when there are some ties. It leads us to expect that
the tests with the 'variance correction terms’ have smaller variance than the others.

The variance estimators obtained from the above discussions are listed in Table 1. In the

sequel, let V,= V/ o, for £=1,-+,10. The first five tests are for the independent samples and
the others are derived to accomodate dependence of paired data. The ’‘variance correction
terms’ are included in V,, V,, V; and V,. Replacing them with the discontinuity correction
terms, it yields their counterparts, Vi, V;, Vi, and Vi Four tests, Vi, V,, Vg, and Vy, are
based on separate samples and their respective counterparts based on a combined sample are
Vo, Vi Vi, and Vi The sum of squares type variance estimators are used in V,, Vi Vj

and V. By the equation (1), they are also affected the ’'variance correction terms’. Note that,

if we use the separate sample estimators a’?l\l and a’.71\2, the fifth estimator is equal to the

fourth estimator. Among ten tests, the last one was proposed by Jung (1998) and the first
corresponds to the usual weighted logrank test. The performance of these tests will be
compared through a simulation study in a later section.

2.2 Independence test

In the previous section, we discussed the variance estimators of weighted logrank tests.
Since some of them are taking the dependence into account, a class of independence tests is
accessible by comparing them with their counterparts derived for the independent sample case.

From the third and eighth estimators, for example, we may have a test statistic

S— fowfomn2mt1)mt2)l’(tl,t2)/{ Yi(t) Yo ) Adt, , dty).
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Table 1. Consistent variance estimators for weighted logrank tests

o= [T WO/ YD+ 1/ Y2 (01— AT (D) dAH

~ 2

5,0 = fown2W<t>{1/Y1(t)+1/Y2(t>}<1—m<t)>af/1<r>

A~

5= 3 [ WOV (- A0, (9)dAND

~

o' = ;fownzwg(t)/Yk(t)(l— AN, (D)dA(D

~ ~ 2

2 - A2 .
o5 =n"'20( & + &), calculated with the common dA.
=

5= ' 2 [ )W) Y, )/Yi(8) Vi) Aldh, dty),
A calculated with the common dAl.

Fe w2 [ [T AW Yh, )/(Yi(8) Yilt) Aldty, dby),
A calculated with the common dA.

o= o' =2 [ [T AT W) YO, ) Yi ) Vi) Aldty, diy),

A calculated with dA; and ds.

~

092= n—lg( €~ €)% calculated with d/, and d7,.

~ 2 - ~ ~ .
O = n 12( €1,— &5;)°, calculated with the common dZl.
~

Note that the Prentice and Cai estimator A(dt,dt,) equals to Y(4, ) ! Z‘l M (dty) My{dty)

because M {dt)) My{dt,)=0 for any i¢ R(#,t,). Therefore S can be written by

S =n"1" Ig fo J(; W t,, t,) Mi(dty) Mr(dt,),

where the weight function W{¢), tp) = #* W) W t,) Y(#, t)/{ V1(#) Yo(%,)} which is
_assumed to converge uniformly in probability to a fixed function over [0, 7;1x[0, ] and
rp=sup{t: (X, > #>0}. This statistic S; has the same form as that proposed by Hsu and
Prentice (1996) and Shih and Louis (1996).

Under the null hypothesis of independence, they showed that the statistic S; has an

asymptotic normal distribution with mean 0 if some regularity conditions are satisfied.
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Furthermore, Hsu and Prentice(1996) proposed a consistent variance estimator

' = n T [ e 1) Fiddn) Flan),

while Shih and Louis (1996) presented a consistent estimator

/&SLIZZ ”ﬂj;) fo WALy, t) Y(ty, t,)d A (1) dA5( ).

With the same reason as mentioned for logrank test, the latter can be modified by using
the variance correction terms as

st = [ [TWL Y A - 4D (A A ()R )R 1),

Comparing ninth estimator with third and fourth estimators in the Table 1, we can get two
more statistics, S, and S;, applicable to the independence test,

Sz =( /(\732 - ,(\)'92 )/2

= S [T YO YDA~ AAS ()T~ (o= @),

The statistic S; is obtained by replacing 47, with 42, The variances of S, and S;
can be estimated consistently by summing up squares of quantity next to the first summation

as shown in oup. Note that S, is apt to be larger than S; because o,° has no 'variance

. . ~ 2 . .
correction term’ while ¢, has a 'variance correction term’.

So far we introduced the following five tests ;
1. testl reduced from logrank test : Sim=Sy/V Var(S,).
2. test? reduced from logrank test ©: S;m=S3/V Var(S,).
3. Hsu-Prentice : Sgp= S,/ Oup.
4. Shih-Louis : Sg;=S;/ 0s11.
5. modified Shih-Louis : Sg»= S,/ Gsra.

Among the tests, three tests, S;m, S;p and Sg, include the ’variance correction terms'.

These tests as well as several weight functions will be compared through simulation studies
in the next section.
3. Simulation

3.1 Simulation scheme

To compare the performance of test procedures described in section 2, simulation studies
were carried out. Logrank, Prentice-Wilcoxon and Gehan-Wilcoxon weights were chosen for
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the weighted logrank tests. For the independence tests, we denote these three weights from
the weighted logrank tests by Wi(#,8), Wi(h,t) and Wy(#,t), and three more weights
Wit t)=1, Wt t)= Si)S(t), and  Wilt, &) = S H1—=Si(# ) Sk )1 = So( 1)),
were added. Here, Wi(#,%) and Wi(#,#) can be considered simplified logrank and
Prentice-Wilcoxon weights, respectively.

For both the weighted logrank tests and the independence tests, correlated random numbers
were generated from three bivariate distributions. One was a bivariate exponential distribution
constructed by Moran’s algorithm (Moran, 1967). The other two were from the Clayton's
family (Clayton, 1978). One of them has exponential margins while the other has logistic
margins. Random variates for the Clayton’'s family were obtained by Oakes (1982) method.

Three parameters were considered for each distribution, marginal failure rates A4,, 4; and
correlation coefficient o for Moran’s exponential, marginal failure rates A,, A; and Kendall's
tau t for Clayton’s exponential, and marginal means y,, u, and Kendall's tau r for
Clayton’s logistic. We chose A;=1, A,=1, 0.75, and £,=100, £,=100, 100.5 and p(or 7}=0.0, 0.2.
We used about 30% censoring together with no censoring. As in Jung (1998), censoring
variates were generated from U(0,3/4,), £=1,2, for the exponential distributions. In the case
of the logistic distributions, 30% censoring could be achieved by using U(—3,7)+tu, k=12,

as the censoring distribution. All empirical type 1 error probabilities and powers were
calculated based on 1000 samples of size n=50. All tests were done at level 0.05.

3.2 Simulation results: logrank tests

Some typical results for empirical type [ errors are given in Table 2 and 3. From the
tables, we observe that the tests with a 'variance correction term’ ( V,, Vi, Vi, Vi) are less
conservative than their counterparts ( Vy, Vi, Vi Vi) Another anti-conservativeness is
shown in V,, Vs, Vg and V), for independent samples, and in V, for a paired sample.
Note that these tests have their sum of squares type variance estimators so that they have
the ‘variance correction term’ effects. So we guess that the anti-conservativeness can be
explained by the ’'variance correction term’.

In fact, the type 1 errors of the tests, affected by a ’'variance correction term’ effect,
appear to exceed the nominal level for some situations. Especially, it seems severe when they
are combined with the logrank weights (LR). As known, the logrank weights have relatively
larger values on late time than Prentice - Wilcoxon and Gehan - Wilcoxon weights.
Furthermore, this property of the logrank weights is combined with the ’variance correction
term’ effect which also is larger on late time. Note that the 'variance correction term’
decreases in time { It might be an explanation for the reason that the type I errors for the
logrank weights are larger than the other weights.
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We don’t observe any special differences between tests based on the combined sample and
tests on separated samples so that the separated sample estimators may be used instead of
the combined sample estimators for computational convenience. In most cases, censoring gives
larger type 1 errors. If we take into account that the considered tests are designed for
censored data, it does not seem to be surprised. As expected, it is also observed that the
tests for independent samples are quite conservative when dependency exists. In the
independent sample cases, Table 2 shows there seem to be no serious difference between the
tests for independent samples and the tests for a paired sample.

In the case of 7r=0.2, no censoring and Clayton family with equal marginal means, it should
be mentioned that the type [ errors for exponential and logistic distributions are found to be
the same. It seems due to the algorithm of random number generation which makes the same
ranks for both distributions. It is also observed that the same situation occurs in the Table 7
of the independence tests.

Table 4 and 5 represents the empirical powers for independent samples and paired sample,
respectively. They show very similar results as in comparison of type [ errors. So, we will
describe them briefly. The tests with a ‘varlance correction term’ and with the sum of
squares type estimators produce slightly higher powers than their counterparts. The tests
based on the separated samples are comparable to those based on the combined sample. The
tests for independent samples have, of course, smaller power than the tests for dependent
samples, while both are similar in the case of independent samples. Although a few exceptions
are found, the logrank weights and Prentice-Wilcoxon weights seem to be optimal for the
exponential distributions and the logistic distributions, respectively. However, the theoretical
consideration of optimality was difficult, so we could not access it. It is also observed that
Prentice ~ Wilcoxon weights seem to be less affected by censoring than the other weights.

3.3 Simulation results: independence tests

The empirical type [ errors are shown in Table 6. First of all, the empirical type I errors
of S, are found to exceed nominal level for the logrank weights W and W;, while it is

rather conservative for the other weights. It seems due to the combined effect of the 'variance
correction term’ and the logrank weights. This effect is also found a little in the rest two
tests affected by the 'variance correction term’, S;r and Sg,. It is observed for S;x and

Sgo that the former is quite conservative whereas the latter has slightly larger type 1 errors
than its counterpart Sg;;. The type [ errors of Spyp and Sg, are closer to the nominal level
On the contrary, S;z is more conservative than Syp and Sgs. As for censoring and the

marginal distributions, there seem to be nothing special to remark.
The empirical powers are summarized in Table 7. S, in spite of its conservativeness for

Wi— W, are superior to the others except for W,. Especially, it has pretty high power for W
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and W;, which seems to be due to its anti-conservativeness. Except for Str, Ss2 has
slightly higher powers than others in most circumstances. According to these observations, we
guess that the 'variance correction term’ affects a little to S;z, Siz and Ssr2 even though
it is not clear. It is also observed that W, and W;, the weights from logrank tests, give
powers similar to those of corresponding weights W, and W,. Though the powers of logrank
weights are relatively high for most cases, it is interesting that any single weight does not
dominate the others even for the Clayton family, for which Shih and Louis (1996) showed that
W, is optimal. The powers appear to be heavily affected by censoring for all tests and all

weights. There are nothing special in the marginal distributions.
4. Example

The well known skin graft data are used for illustration. The data are taken from Woolsen
and Lachenbruch (1980). There are 11 pairs of survival times, recorded in days, of closely and
poorly matched skin grafts on each patient. Two observations for closely matched skin grafts
are censored.

The two-sided p-values for the weighted logrank tests are shown in Table 8. For each
test, logrank, Prentice-Wilcoxon and Gehan-Wilcoxon weights are used. However, the results
for Prentice-Wilcoxon and Gehan-Wilcoxon test coincide accidentally, so the latter test is
omitted in Table 8.

Table 8. Two-sided p-values of V,

for logrank and Prentice-Wilcoxon weights.

Vi Ve Vs Vy Vs Vs Vi Vg Vo Vi

logrank 057 047 055 034 021 044 035 011 002 012
P-w 08 07 084 063 064 052 .042 024 010 .032

Before starting discussion, it should be mentioned that Table 8 was obtained from a small
data while the tests are based on asymptotic theory. Though it may lead to wrong
conclusions, but the results here are quite similar to those from the simulations.

As shown in the independence tests below, this data seem to have a little dependence. It
makes the tests for independent samples less significant than those for a paired sample. It is
also observed that tests with a 'variance correction term’ (V,, V,, V;, V,) give smaller

p-values than their counterparts without the correction term ( V;, V;, Vi Vi), As comparing
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Table 2. Empirical type 1 error of weighted logrank tests with
LR logrank, PW: Prentice-Wilcoxon and GW: Gehan-Wilcoxon weights
for independent samples from

I : exponential( A,= A,=1) and II: logistic( x;= ¢,=100) distributions.

Vi vy Vi Vi Vs Vs Vi Vs Vs Vi
no_censoring
LR 0.048 0.050 0.040 0.051 0.056 0.047 0.052 0.043 0.057 0.061
PW=GW 0.045 0045 0.044 0045 0.046 0.045 0.046 0.045 0.051 0.045
LR 0.055 0.060 0.043 0.062 0.063 0.046 0.052 0.045 0.057 0.057
PW=GW 0.045 0045 0.044 0045 0.049 0.045 0.049 0.047 0051 0.049
30% censoring
LR 0.063 0.066 0.055 0.067 0.068 0.061 0.063 0.056 0.067 0.066
PW 0.061 0.066 0.056 0063 0.063 0.063 0.063 0.064 0.074 0.064
GW 0.060 0.062 0.058 0.063 0.060 0.060 0.061 0.061 0.066 0.060
LR 0.065 0.068 0.058 0.076 0.080 0.067 0.069 0.060 0.078 0.074
PW 0.057 0.061 0.051 0.060 0.059 0.056 0.058 0.057 0.062 0.057
GW 0.065 0.066 0059 0065 0065 0.057 0.059 0.058 0.062 0.039

Table 3. Empirical type I error of weighted logrank tests with
LRR: logrank, PW: Prentice-Wilcoxon and GW: Gehan-Wilcoxon weights
for a paired sample ( o or 7=0.2) from

[ : bivariate exponential( ;= A,=1) by Moran’s algorithm,

O: Clayton family with exponential margins( A;= A,=1) and

[I: Clayton family with logistic margins( z,= ¢,=100).

12 V, Vs Vi Vs Vs V; Vs Vg Vy
no_censoring
LR 0.022 0028 0.018 0.029 0.032 0.038 0.043 0.039 0052 0.052
PW=GW 0.029 0.030 0.028 0.030 0.032 0.034 0.036 0.035 0.041 0.036
LR 0.023 0.024 0.019 0.028 0.030 0.048 0.056 0.052 0.066 0.058
PW=GW 0.026 0.027 0025 0027 0026 0.052 0.052 0052 0.055 0.052
same as [l
30% censoring
LR 0.042 0.043 0.037 0.043 0.044 0.054 0.055 0.054 0.062 0.057
pPw 0.038 0039 0036 0.039 0041 0.057 0.057 0057 0.062 0.056
GW 0.041 0043 0.038 0.041 0041 0.053 0.054 0055 0.058 0.053
LR 0.028 0.036 0024 0.036 0036 005 0060 0050 0.065 0.061
PW 0.022 0.024 0022 0024 0025 0044 0.045 0.045 0.048 0.045
GW 0.021 0023 0.020 0.022 0022 0.034 0.039 0.038 0044 0.037
LR 0.031 0.032 0.026 0.039 0.037 0.057 0.062 0.053 0.068 0.062
PW 0.032 0033 0.029 0.033 0.030 0.047 0.048 0.047 0.054 0.048
GW 0.032 0.033 0.028 0034 0.034 0045 0.049 0.047 0.052 0.046

575
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Table 4. Empirical power of weighted logrank tests with
LR logrank, PW: Prentice-Wilcoxon and GW: Gehan-Wilcoxon weights

for independent samples from

[ : exponential( A;=1, 4,=0.75) and II: logistic( x,=100, 1,=100.5) distributions.

Vi V, Vs Vi Vs Vs V; Vs Vg Vi
no_censoring
I LR 0.331 0.344 0304 0349 0.359 0314 0329 0.306 0.352 0.348
PW=GW 0245 0251 0.233 0.249 0253 0.228 0235 0.234 0.243 0.240
I LR 0.246 0255 0235 0264 0263 0232 0.239 0.228 0258 0.251
PW=GW 0291 0295 0280 0293 0293 0.270 0.277 0281 0.293 0.279
30% censoring
I LR 0.229 0234 0210 0.237 0245 0222 0228 0216 0238 0.239
PW 0.212 0.217 0202 0213 0223 0.191 0200 0.194 0.207 0.201
GW 0194 0198 0.187 0.194 0.198 0.180 0.185 0.183 0.189 0.183
I LR 0.238 0249 0.217 0253 0.251 0237 0247 0230 0259 0234
PW 0266 0268 0.256 0266 0268 0250 0256 0250 0260 0.255
GW 0.262 0265 0249 0260 0.264 0.254 0258 0256 0.264 0.253

Table 5. Empirical power of weighted logrank tests with
LR: logrank, PW: Prentice-Wilcoxon and GW: Gehan-Wilcoxon weights
for a paired sample ( o or r=0.2) from
I : bivariate exponential( A,=1, A,=0.75) by Moran’s algorithm,

I: Clayton family with exponential margins( A,=1, 1,=0.75) and

M: Clayton family with logistic margins( x;=100, #,=100.5).

Vi V, Vs Vi Vs Ve Vi Ve Vo Vi
no censoring
I LR 0294 0305 0277 0312 0.330 0354 0360 0.354 0405 0.395
PW=GW 0.230 0.236 0.220 0.234 0241 0.278 0.284 0283 0.301 0.288
I LR 0.240 0.258 0.219 0.263 0276 0407 0437 0407 0478 0457
PW=GW 0.18 0.190 0.177 018 0.192 0295 0300 0.299 0.310 0.301
m LR 0188 0198 0.172 0205 0203 0351 0371 0345 039 0.371
PW=GW 0244 0251 0.233 0245 0.246 0363 0376 0373 0.395 0370
30% censoring
I LR 0215 0224 0.196 0219 0232 0246 0257 0.240 0.282 0270
PW 0.193 0.198 0.184 0.193 0.198 0229 0.238 0231 0244 0236
GW 0177 0.182 0.174 0.177 0183 0.210 0.217 0215 0.231 0.218
I LR 0.201 0208 0.179 0207 0219 0264 0277 0.255 0304 0.289
PW 0.173 0.179 0.166 0.172 0.179 0242 0.253 0.243 0.263 0.253
GW 0.171 0173 0160 0170 0.173 0218 0229 0223 0241 0228
m LR 0.213 0223 0.191 0231 0.230 028 0299 0276 0.328 0.301
PW 0257 0262 0245 0253 0.254 0319 0326 0317 0337 0325
GW 0.249 0.254 0.237 0.245 0.248 0308 0.314 0.308 0322 0.305
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Table 6. Empirical type I error of independence tests

Sup, Ssiy and Sgp with weights Wy — W for
[ : exponential( 4,=1, A,=1, 0.75) and
IO: logistic( #,=100, w,=100, 100.5) distributions.

SLRI; SLRZv

12:1( /l2:100) A2:075( /12:100.5)
Stm Sim Swp Ssu Ssw Sir Sie Swp Ssu Ssi
no censoring
144 0.057 0.028 0.043 0.023 0.046 0.081 0.032 0.041 0.034 0.056
W, 0.053 0.024 0.044 0.036 0.056 0.081 0.028 0.041 0.034 0.058
Wy 0.024 0.015 0.047 0.041 0.047 0.033 0.024 0.046 0041 0.050
Wi 0.024 0.016 0.046 0.041 0.047 0.030 0.021 0.041 0.041 0.048
Wy 0.023 0.017 0043 0.042 0.044 0.033 0.027 0.049 0.045 0.047
W 0.037 0018 0060 0.039 0.049 0.034 0.022 0.040 0.038 0.048
W 0.073 0.028 0.040 0.027 0.053 0.071 0.029 0.042 0.022 0.052
W, 0.063 0.027 0.036 0.032 0.051 0.064 0.022 0041 0.025 0.049
W 0.022 0.017 0.045 0.039 0.042 0.033 0.024 0.054 0.041 0.045
W, 0.026 0.016 0.044 0.041 0.047 0.033 0.022 0.051 0.041 0.050
Ws 0.022 0.017 0.043 0.042 0.044 0.034 0.028 0.049 0.042 0.046
W 0.034 0.012 0059 0.038 0.050 0.041 0.031 0.059 0.044 0.052
30% censoring

%4 0.063 0.018 0.052 0.034 0.051 0.049 0.022 0042 0.037 0.057
W 0.055 0.020 0.053 0.038 0.049 0.050 0.017 0.046 0.036 0.052
W, 0.029 0.016 0.052 0.038 0.047 0.027 0.021 0.052 0.042 0.051
Wi 0.026 0.015 0.047 0.045 0.052 0.022 0016 0055 0.041 0.051
|44 0.029 0.013 0045 0.038 0.044 0.028 0.015 0.048 0.043 0.052
W 0.043 0.020 0.055 0.042 0.039 0.038 0.019 0.041 0.038 0.052
W 0.082 0.024 0.049 0.032 0.053 0.070 0.019 0.041 0.030 0.046
W, 0.078 0.024 0.057 0.035 0.055 0.036 0.013 0.043 0.029 0.045
Wy 0.030 0.019 0.061 0046 0.057 0.020 0.015 0.045 0.040 0.043
W, 0.019 0.015 0.057 0.047 0.053 0.015 0.012 0.045 0.038 0.041
W 0.031 0019 0059 0.045 0.056 0.027 0.017 0.045 0.041 0.048
W 0.044 0.015 0.059 0.047 0072 0.042 0015 0.045 0.025 0.041

577
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Table 7. Empirical power of independernce tests

Sitr, Sir,

Syp, Ssip and Sgrp with weights W — W
for a paired sample ( o or r=0.2) from

[ * bivariate exponential( A;=1, 2,=1, 0.75) by Moran’s algorithm,

II: Clayton family with exponential margins( A,=1, A,=1, 0.75) and
II: Clayton family with logistic margins( 1,=100, #,=100, 100.5).

A,=1( 1£,=100) A5=0.75( 1,=100.5)
Sim Sie Swp Ssu Ssi Sim Sim Swp Ssu S sL2
no censoring

I W 0.378 0.233 0.126 0174 0.253 0.383 0.239 0.128 0.176 0.246

W, 0374 0.238 0.128 0.180 0.251 0.376 0.214 0.142 0.182 0.241

Wi 0204 0.170 0.189 0.167 0.179 0.210 0.173 0188 0.167 0.177

W, 0.207 0.164 0.190 0.163 0.178 0215 0.165 0.189 0.160 0.181

W 0208 0.173 0.195 0.168 0.185 0.217 0.177 018 0165 0.185

W; 0252 0.178 0.118 0.158 0.186 0258 0.181 0.118 0.161 0.192

o W 0.789 0.672 0391 0623 0.695 0796 0635 0423 0571 0676
|74 0.805 0.673 0426 0.633 0.704 0802 0.616 0464 0595 0.686

Wy 0557 0503 0522 0514 0.537 0589 0512 0534 0527 0545

W, 0551 0.49% 0520 0517 0531 0590 0514 0539 0522 0545

W 0569 0503 0521 0505 0.538 0597 0519 0536 0542 0.563

W 0681 0.582 0433 0557 0.603 0.650 0.560 0.406 0528 0.580

m 44 0796 0635 0422 0571 0676
W 0790 0630 0452 0609 0676

W same as 1[I 0595 0511 0536 0530 0548

W 0586 0.508 0545 0520 0.546

W 0597 0519 0536 0542 0.563

W; 0650 0.560 0.405 0528 0.580

30% censoring

I W 0.249 0133 0.124 0104 0.145 0255 0.136 0.126 0.104 0.136

W, 0245 0.138 0.135 0.106 0.145 0.241 0.127 0141 0096 0.145

W 0.139 0.106 0.128 0.105 0.123 0.134 0.101 0133 0114 0.126

W, 0113 0.082 0.112 0104 0.120 0.115 0.085 0.122 0109 0.118

W 0.141 0.108 0.130 0.111 0.128 0.143 0.108 0.136 0.118 0.139

W 0.152 0.102 0.092 0.088 0.109 0174 0.094 0.08 0080 0.109

I W 0549 0.397 0366 0.329 0.400 0553 0399 0360 0331 0427
W, 0550 0.390 0.369 0.338 0.404 0.536 0.353 0372 0327 0.392

Wy 0357 0.283 0.343 0.314 0.337 0.350 0.291 0.336 0300 0.335

W, 0.281 0.226 0304 027 0.303 0289 0.231 0294 0274 0294

W 0.365 0.293 0.346 0.323 0.351 0.368 0.306 0.347 0318 0.348

W 0426 0.275 0.250 0.238 0.303 0423 029 0.267 0252 0.309

m |24 0.593 0.370 0.303 0.282 0.387 0563 0364 0271 0275 0.398
W, 0585 0.362 0308 0.286 0.392 0540 0.318 0.291 0.287 0.373

W 0.345 0.276 0.329 0311 0.334 0.324 0.257 0307 0279 0.304

W, 0.242 0.199 0270 0258 0.284 0.236 0.173 0259 0.250 0.272

W 0.363 0.283 0.329 0.307 0.337 0.342 0272 0316 0291 0316

W 0.408 0.261 0197 0217 0.277 0421 0271 0208 0.229 0292
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Vi, Vo, Vs and V; with Vi, V,, V, and V,, we can find out that the separated samples
estimators produce more significant p-values for this data than the combined sample
estimators. In the previous sections, we mentioned test statistics with sum of squares type
estimators, Vi, Vi, V, and V). From Table & these statistics are also found to have quite
small p-values. For the weights functions, as noted in Jung(1998), the logrank weights shows
smaller p-values than the Prentice-Wilcoxon weights because the latter puts more weights on
early times while larger differences of two survival times are detected for late times.

In summary, this data show some dependence and more differences on late times. Besides,
if we recall the type 1 error problem in V,, two tests Vg and Vi, with the logrank weights
seem to be proper for this data.

Next, the data are analysed with the independence tests. All six weights are used for each
of 5 statistics. The next table represents the one-sided p-values.

Table 9. One-sided p-values
of independence tests for 6 weights,

woow W W W W

St 0.007 0.009 0005 0007 0005 0.014
Sir 0027 0.026  0.009 0018 0.009 0078
Sup 0030 0.041 0039 0042 0.039  0.069
Ssi1 0170 0.09%6 0053 0064 0062 0230
Ssz 0.082 0.033 0028 0.034 0033 0.167

Table 9 shows several interesting things. First of all, the Fleming-Harrington's weight W
seems to be irrelevant to this data. Secondly, for all tests except for Syp the
Prentice-Wilcoxon type weights( W, W) are detecting dependence more efficiently than the
logrank type ones( W, W;). This results coincides with that found by Shih and Louis (1996),
that this data have stronger association on early times than on late times. As expected from
the simulation results, the weights W, and W, from logrank tests does not appear to have
apparent advantage compared to W, and Wi. As for the test statistics, the reduced tests, S;m
and S;p, have much smaller p-values.

In summary, this data have stronger association on early times than on late times, so the
Prentice-Wilcoxon weight W, seem to be proper. As for the test statistics, though S, and

Sir have much smaller p-values, Syp or Sg» may be good if the unstability of the reduced
tests in the type 1 errors is concerned.
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5. Discussion

For the weighted logrank tests, 'the variance correction terms’ play a role to reduce the
variance. As a result, the variance estimators with the correction terms as well as the sum of
squares type estimators give higher powers. In the previous sections, we also found that the
methods based on the separate samples are comparable to the methods on the combined
sample. Therefore, the former may be preferred for convenience. In addition, the tests for a
paired sample are comparable to those for independent samples with respect to both type I
error and power. It means that we need not to concern whether two survival times are
independent or not.

With this point of view, the statistic Vy with all the above factors may be regarded as the
best. However, as noted in the simulation results, it shows quite large type I errors in some
cases. As a matter of fact, it is also found in some small sample situations that the type I
errors of V,, Vs and V), also exceed the nominal level. Among them, V), seems to be more
stable than V3. If we consider this point, V;, V3 and V), are recommendable. According to
the results from simulations and example, we also guess that the properties of the weight

functions, known for the independent sample tests, are preserved for paired data. That is, the
logrank weights are optimal for the exponential distributions and more sensitive to detect late

differences, Prentice - Wilcoxon weights are optimal for the logistic distributions, and
Prentice - Wilcoxon and Gehan - Wilcoxon weights are more sensitive to detect early
differences.

For the independence tests, the ’variance correction terms’, together with the logrank
weights, seem to affect the performances of S;x, Sim and Sgy. Particularly it is rather

severe for S;p, so the type [ errors of S;z with the logrank weights exceed the nominal

level. As shown in the simulation and example, the weights from logrank tests does not
appear to surpass their simpler versions. Therefore, the simple weights W, W; and W, will

be fine as the weight functions. In summary, the Hsu-Prentice test and modified Shih-Louis
test with the simple weights seem to be stable and preferable for the independence tests.

Appendix
proof of equation (2)
To show that
SUTWMOIYAD d (Y= [ WD/ YL (1— AR AN, (A

we first drop the subscript £ for notational simplicity and let w(H= W/ Y(H. Further
assume the ordering among observations such that X,<--<X,.
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Note that with dMA{#=dN:(H— Y{HdN(H]/Y(P, the left hand side of (A.1), say A, can be

expressed by

A =S wHaNC) — YDA/ V()T
= 23 [w(X)8;~ 2w(X) Y X )8,/ Y(X))?

=B-2C+ D,
where
B: sz(X,-)é‘,',
and

D=2 22 X)u( XD Y{X)YL{X )88/ A Y(X) Y(X.).
Since Y{(X;)=KX.=X,), under the ascending ordering of the observations, C can be
written by C= C,+ C,+ C3 where
Cr= 2w (X8 (X)),
Co=2 2 (G onw(X)u(X;)8.:6;/ Y(X)),
Cy= 20 2o (tigpici, x,=x, WX )8:8;] Y(X).
Note that when there are no tie in observations, C3; becomes zero.
Similarly, D is also split into three terms, D= D;+ D,+ D,, and these terms are simplified
from the relation YA{X,)Y{X,)=Y(X;) (j=k) as follows;
D= Z;MX,-) Y{X)8/ YA(X)= $w2(xj)aj/ Y(X)),
Dy = 2320 2G> 0 w(X)w( X ) YAX))8,84/{ Y(X) Y(X )}
= 20 23 (G.aei b WX )w( X ) 0,04 V(X ),
Dy = 2020 2 anscn w(X)w(X ) YLX,)8,84/{ V(X)) V(X))
= 20 206w 0 (XD u( X )86, Y(X).
Since C,=D, and C,= Dy= D3, we have A=B—(C,+2C5).
On the other hand, the right hand side of (A.1), A’, can be written by
A = [wkDaN ()~ [ W (DAN() N/ V()

= 23 w'(X))8;— 3020 w(X)AN(X )8/ Y(X)

=B—-C’
From the definition of the counting process, AN{(X;) takes the values of &; if i=7j, 9; if
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i¥jand X;= X and 0 otherwise. Hence, C is equal to C;+2C,, resulting in (A.1).
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