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An Influence Measure in Comparing Two Population Means?V
Whasoo Bae?

Abstract

In comparing two population means, the test statistic depends on the sample means
and the variances, which are very sensitive to the extremely large or small values.
This paper aims at examining the behavior of such observations using proper
criterion which can measure the influence of them. We derive a computationally
feasible statistic which can detect influential observations on the two-sample
t-statistic.

1. Introduction

It is known that some extremely large or small valued observations compared to the other
values may give so much influence that they can change the considered statistical model and
the conclusion of test. However, most works have been done in the area of regression
analysis.  Cook(1977) detected the influential data point using Cook’'s distance in linear
regression analysis, and good references in this area are Belsley, Kuh and Welsch(1980), Cook
and Weisberg(1982), and Chatterjee and Hadi(1986). Pregibon(1981) suggested one-step
estimator in the logistic regression diagnostics. In Box-Cox transformation model, Cook and
Wang(1983), Hinkley and Wang(1988), Tsai and Wu(1990), Kim, Storer, and Jeong(1996)
studied the influence on the transformation parameter. Regression diagnostics in
nonparametric regression models are studied by Eubank(1985), Silverman(1985), Thomas(1991),
and Kim(1996). Also, in the area of multivariate analysis, such as the discriminant analysis,
Campbell(1978) and Fung(1995) studied identification of influential observations and suggested
some basic building blocks.

In testing problem, the testing result also will be changed by one or few influential data
points. But it is very rare to find a work about the influence of the point in testing mean. In
testing population mean, the testing statistic i1s based on the sample mean which is very
sensitive to the extreme values. If some observations are extremely large or small compared
to the other values, the testing result might be changed by these influential points. Hence it
might be interesting to see how these observations give effect to testing result.
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In section 2 a statistic to measure the influence of cases on the two-sample t-statistic is
given and section 3 gives a behavior of p-value of test statistic by infinitesimal perturbation
of observation. An example using an artificial data set with the masking effect is in section 4.

2. An Influence Statistic

Let X, X3, -, X,, be random sample from N(,ul,OZ) and Y,, Y,, =, Y, be

random sample from N (., 02). Also, assume that these two samples are independent.
Note that these are the usual set-up in two sample comparison problem. When we test
Hy : p1=p, the usual two-sample t-statistic is
XY
1
S» \/ * n

and it follows the t-distribution with m+ n—2 degree of freedom, where X and Y are

Nl

sample means and s, is the pooled sample standard deviation.

If some observations are considered to be very extreme and influential to testing result,
then we can check the influence of these data by comparing the value of testing statistic with
them in and the one without them. That is, the influence of such observations can be
measured by investigating the difference between these two values of test statistic. This
approach is so called the deletion method. The well known Cook’s distance belongs to this
approach.

Let K={#, 4y, -, 4} and L={j;, 7,, -, 7, } be two index sets and we will delete %

and [/ cases fromm and # observations, respectively. Also let ?((K) and 7(“ be the
sample means based on m—#% and w— ! observations after deleting %, and / data points
and s,k 1y be the corresponding paoled sample standard deviation. Then the test statistic
without these data points is as follows ;

i)_((K) — —Y(L)

1 1
sf’(K'L)\/ m—F " =1

Ltk =

= quwn {t— r&pt (1)

where
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_ NV (m—bBa—0m+tw)(mtn—Fk—[1—2) 1 )
4 (x,L) Vomn(m+n—2)(m+ n— k— ) \/1_ dy
(m+ n_2) sz
with
dy= Zovt + g (o' + T v+ (5 )’ 3)
and
— (m—k) e ! (n_l) JE /
YKL T 1 ] : (4)
s \/h—i-—
N m o om
where
o, = X,— X, Sy, = Y,— Y (5)

See the Appendix for the proof. Note that Eq.(1) is very useful and computationally

feasible because ¢k ) 1s expressed as the original test statistic £ Therefore, if Lk 1y 1s very

different from #, then cases in K and L can be regarded as influential. To make the

difference statistic have better interpretation, we can express it as a relative change, ie.,

tn = | t — tt(K,L) = |1 - l‘u;,ul
So, if 7tk 1) is away from O cases in K and L can be regarded as influential on the test
statistic. However, it seems to be very difficult to find the reference distribution for
lt—tw ) |-

3. Numerical Perturbation

To see how one or few cases affect the test statistic we generate an artificial data set A
given in Table 1. Based on these data the p-value of the t-statistic is 0.0515. Now we add

one case 30+ 4 to sample X and varies % from O to 28, and the resulting p-value for each
k is given in Figure 1. Note that the added case is between minimum and maximum of the

sample X, and the p-value changes from 0.125 to 0.038. ie., one case can change the result
of test. Also, we note that even though a case is not away from the sample mean it can be
influential observation on the test statistic. For example, in data A, if 50 is added to sample
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X, then the null hypothesis is rejected at the level of significance 0.05. Therefore we must be
cautious when detecting influential observations in this problem.

Table 1. Artificial data A

X 30 35 38 41 44 44 46 46 47 49 53 56 58
Y 29 33 34 38 38 39 40 40 41 42 47 51

0.08 r

P-value

0.06

0.04

0.02 t
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k

Figure 1. Plot of p-values vs A

One case 30+%4, £=0, 1, -, 28 is added to sample X.

One can guess that if &x; or dy; is large then the statistic would change a lot, however, it
is not always true. For the data set B in Table 2, we make the case 58 (maximum of
sample X) larger and larger, ie, 58+ %, £=1,2,3,.... Then, one might expect that the
resulting p-value of the test statistic would be smaller and smaller. However, as shown in
Figure 2, p-value becomes smaller up to some £k (about 30) and remains almost constant for
k>30. If there is one extreme outlier it affects not only to the sample mean but also to the

pooled sample variance. Therefore, an outlier is not necessarily an influential case, and we
should be cautious in interpreting an outlier.

Table 2. Artificial data B

X 30 35 38 41 44 44 46 46 47 49 53 56 58
29 32 3 39 39 40 41 42 47 51 55 57

0-<
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Figure 2. Plot of p-values vs 4.

Case 58 is replaced by 58+ k&, £=0, 1, -, 80.

4. Example for the Masking Effect

When a set of observations (7, ) is influential and they are not individually influential, we
say the set (7, /) has a masking effect. This is why the single case deletion is not enough

and multiple case deletion is necessary.

As an illustrative example for the masking effect, use an artificial data set C given in Table
3. For the data set C, p-value is 0.015, ie, the null hypothesis is rejected at the level of

significance 0.05. If we delete case 58 from sample X, the resulting p-value is 0.029, and if
we delete case 29 from sample Y, the resulting p-value is 0.028. Therefore, deletion of one
case from either sample does not change the result of test. But, if we delete both cases
(case 58 from sample X and case 29 from sample Y), the resulting p-value is 0.052, ie., the

null hypothesis is not rejected.

Table 3. Artificial data C

X 30 35 38 41 44 44 46 46 47 49 53 56 58 58
29 29 33 34 38 38 39 40 40 41 42 47 51

I-<
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Appendix
First, we note that
X- X =X—510 2 x,
=X-—LomX- T x)
-1 S x-%) (A1)

ie, X-— 7((10: 2{896,«/(1%——/6) and similarly, Y— T’(L)= ani/(n— /), where
e JjE

8x; and d8y; are defined in Eq.(5). Let s% ,s% be sample variances based on m and #

observations, respectively. Also, let sim , Szy(L) be sample variances based on m— % and

n— [ observations, respectively. Then, by (A.1), can easily show that

(m—k—l)sXZ(K)= ;{(Xi— 7((10)2
= gl(Xr X ) — ;{(Xi_ X )’
— DX XX~ Rl - GXi- X+ X— X )’
= (m—Dsk+m—B(X— Xuw)— 2 (Xi— X)*
—2(m— (X~ Xx)*
= (m—Dsk—(m— R (X— X)'~ 2 (X~ %)’
= (m—1)s%— ;{&?—m—l_—kv( E(le-)z (A.2)

and similarly

(n—I1=-1Dsén=(n—1)sy— ;6;»?— nl—l (];_3yi)2 : (A.3)
Therefore, by (A.2) and (A.3),
(m+n—k——l—2)sﬁ(2K,L)= (m—k—].)S)Z((K)‘F(n_l_].)S%/(L)

= (m—Dsi+(n—1)s2

—[Sert+ L5 (Sa)+ Bat+ -1 (S

m—k

= (m+n—2)s5—d; (A.4)
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, Where d; is given in Eq.(3). Finally by (A.4) , we have

—X(K) — T/(K)

t B
(K, L) 1

1
Suk D\ B2 ¥

7 (Gl T b B

1 o i 1 1
sp\/m+n—k—l—2\/(m+n 2) si \/m—k+n—-l

(5l B L )

3\/L+L\/ m+n—2 mt+n—Fk—1 mn B d;
WNm nV mtn—Fk—I01-2V (m—kB(n—0DV m+n (m+n—2)s2

and we get Eq.(1)
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