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On the Moving Average Models with

Multivariate Geometric Distributions?

Jong-il Baek?

Abstract

In this paper we introduce a «class of moving-average(MA) sequences of
multivaniate random vectors with geometric marginals. The theory of positive
dependence is used to show that in various cases the class of MA sequences consists
of associated random variables. We utilize positive dependence properties to obtain
weakly probability inequality of the multivariate processes.

1. Introduction

In time series analysis a primary stationary model is the pX1 moving average (MA) model

given by,
X(n)= 3 A(e(n=), n=0,%1, %2, D
where A(7), 7=0,%1,%£2,---, is a sequence of pXp parameter matrices such that
jimHA(j)H < oo, and e&(n), n=0,+1,+2,---, is a sequence of uncorrelated px1

random vectors with mean zero and common covariance matrix. It is well known that model
emerges from many physically realizable systems(see, for example, Hann,E.J (1970), p.9).

Gaver and Lewis(1980) consider stationary autoregressive moving average(ARMA) type
where the random variables X(%) have gamma distributions. Jacobs and Lewis(1983)

construct ARMA-type model where the random variable X (%) are discrete and assume
values in a common finite set. The models mentioned above have been used in various fields
of applied probability and time series analysis; for example, they have been used to model and
analyze univariate point processes with correlated service and correlated interarrival times(see
Jacobs(1983a).

In this paper we present a class of finite and infinite MA sequences of multivariate
random vectors has geometric marginals. Within each class of models, the sequences are
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classified according to their order of dependence on the past. We use the theory of positive
dependence to show that in a variety of cases the class of MA sequences is associated. We
then apply positive dependence properties to establish weakly probability inequality of the
multivariate processes.

In Section 2, we define the multivariate geometric distribution that it is the underlying
distribution of our class, and present a variety of examples of such distribution. Furthermore,
in Section 2, we define the concept of association and present geometric distributions that
they are associated. In Section 3, we construct a class of MA sequences proving that it has
geometric marginals and showing that if the underlying distribution is associated, so is the
related MA sequence. Finally, in Section 4, we indicate how to relate multivariate point
processes to the multivarite geometric MA processes discussed in Section 3. Also, in Section
4 we extend a useful concepts of Alzaid(1990)'s weakly bivariate dependence to weakly
multivariate orthant dependence concepts and utilize positive dependence properties to obtain
weak ly probability inequality of the multivariate processes.

2. Preliminaries

We start by stating the definition, examples, and prove basic result to be used in what
follows.

Definition 2.1. Let (X, ---,X,) be a random vector assuming values in the set {1,2,--}.
We say that (X,--,X,) has a multivariate geometric distribution (MVG) if the random
variables X, X5, *-,X, have geometrically distributed. Note that the (42—1) dimensional

marginals (hence k—dimensional marginals, £=1,2, -, n—1) are MVG.

Examples 2.2. (a) Let (X,,--,X,) be independent geometric random vector. Then
(X,,---,X,) has a multivariate geometric distribution.

(b) Let( Xy, **,X,+1) be independent geometric random variables and put N, = min(X,,
X,+1), -, N,= min(X,, X, ). Then( N}, ---,N,)) has a multivariate geometric distribution.

(¢) Let (M;,---,M,) be multivariate geometric random vector and let (N, (;),---, Ni(7)),

7=1,2,->*, be an 17.i.d. sequence of random vectors with multivariate geometric distributions

M M,
which are independent of (M, -+, M;). Then ( 21N1(j)"“’ ZlNk(j)) has a multivariate
= =

geometric distribution.

Next, we present a concept of positive dependence.
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Definition 2.3. Let X=(X,,--,X,), n=1,2,- be a multivariate random vector. We

say that the random variables X,,---,X, are associated if for all pairs of measurable bounded

functions f, g : R” — R both nondecreasing in each argument Cov(AX), g(X))=0.

Remark 2.4. Note that independent random variables are associated and nondecreasing
functions of associated random variables are associated(cf. Barlow and Proschan(1975),
pp.30-31). Thus the components of the random vector given in Examples 22 (b) are
associated.

The following lemma provides sufficient conditions for some of the multivariate distributions
presented in Examples 2.2 to be associated.

Lemma 25. let T=(T,,---,T,) be a random vector with components assuming values
in the set {1,2,--} and let R(;j) = (R, (j),,R.(7)), 7=1,2,-, be an 1i.i.d.
sequence of nonnegative random vectors independent of 7. If T=(Ty,--, T,) are associated

T T
and R,(j), -, R,(j) are associated, then 2‘ R,(7), -, z; R,(j) are associated
= =

Proof. Let f,g: R" — R be measurable bounded functions nondecreasing in each

argument and let X, = jile(j), e, X, = Jé:]?n(/).
First note that
Cov(f(Xy, ., X,), (X1, -, X))
= E(Cov(f(Xy,, X,), (X, X, NI T)
+ Co( Ef(X,,, X)) | T, Eg(Xy, -, X,)|T)
Now, EA(X,, . X,)| T, and Eg(X;, -, X,)| T are nondecreasing function of
7,,--,T,. Since T,,--, T, are associated
Cov( E[f(Xy, . X,) | T], Elg(X,,.X,) 1 T]) =0.
Since f[(X,,,X.)|T], and g[(X,, -, X,) | T] are nondecreasing function of

R, ,R(Ty),,R,(1),-,R,(T,), these random variables are associated (cf. Barlow
and Proschan(1975 a)). Thus
Cov(f(Xy, . X)IT, g(X,, -, X,)|IT)=0.
Consequently, Cov(f(X;, ", X,),g(X;,,X,)) =0 and X,,"+,X, are associated.
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3. Model Constructions and Notation

In this section we construct a class of MA sequences by multivariate random vectors. We
denote the class of sequences by

{(G(n, m)=(G,(n,m),,Gn,m)), n=0,+1,=%2,---}, m=1,2,, 0,

We show that each random vector G (#, m) has a multivariate geometric distribution with
a vector mean independent of # or wm. Within each class of sequences the order of
dependence on the past is indicated by the parameter wm. For each positive integer wme,
G(n,m) depend only on the previous m variates {G(n—1,m), -, G{n—m,m)} and
G(n,0) depend on all the preceding random vector {G{n—1,0), G(n—2,), ---}. After
constructing the various models we conclude this section by present sufficient conditions for the
random variables {G,(n;, m)},1=1,2,---,k;j=1,2,--,k to be associated, where £=1,2,--- and
n<ny<-<n,={0,£1,%2,--}. First, we construct the geometric class of sequences. Some

notation is needed.

Notation. Let p,,--,p, be real numbers in (0,1] and let a,(#n), -, a,(#) be a sequence
of  parameters such  that p;<ain) <1, j=1,2,--, k.  Further, let N((n)
= (N {(n), -, Ny(n)) be independent multivariate geometric vectors with mean vector

(o1 tey(m), -, b7 te(m)) and let  M(n)=(M,(n), -, Mn)) be iid multivariate
geometrics, independent of all M#), with mean vector (p;',--, pz"). Finally, let
(Li(n,7), -, Jn, 7)) be independent random vectors, independent of all M(xn) and N(n),
such that J(#,j) is Bernoulli with parameter (1—ea,(n)), i=1,2,--,k and let Uy/n,j) be a
nX n random diagonal matrix

Uy(n, i) = diag{IT}= g i(n, k), =+, M b=y J(m, k)}, @ € (1,25}

To ease the notation we put U;(n,7) = U(n,7). We now present the class of geo -metric

sequences. For m=1,2,--, and »=0,*1,+2,---, let
G(n,m)= ;U(n, IN(n—»)+ Un,m+ 1)M(n— m) (3.1)
and
Gln, )= 2, Uln, IN(n— 1) (3.2)

Next, we show that G(x,m) has a multivariate geometric distributions. First, the
following Lemma is needed.

Lemma 3.1. For n=0,*1,*+2,---, and m, ¢=1,2,--, let
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H/(n, m)= ;;b Ufn, r+q—DNn—r—q+ D)+ USn, m+ Mn—m—q+1).

Then for all »n, m and ¢, H,((m,m) has a k—variate geometric distribution with mean
vector (py !, -, p2).

Proof. We prove the result of the lemma by an induction argument on .

For m=0,
Hy(n,0)=Nn—q+1)+ Ufn, ) M(n—g+1).
By computing the characteristic function of the components of Hq(n,O) we can verify that

the lemma holds for all #, g. Assume now that the lemma holds for m, and all #, q.
Noting that H,(n, m+1)=NMn—q+1)+ U,(n, g)

X[gbUw(% r+Nn—qg— 1+ U, 1(n,m+ g+ 1DMn—m— )],

we see that, by induction, the terms in the brackets are k— variate geometric with mean
(pr', -+, P2 1), Since this term is independent of N(n-—g+1), it follows as in the case
m=0 that H,((»n,m+1) has a appropriate distribution for all #» and q.

Thus, from the Lemma 3.1, we can obtain the following Corollary 3.2.

Corollary 3.2. For all »# and m, G(xn,m) has a k—variate geometric with mean vector
(o7t 08 ).
Proof. Since H(n, m) = gb U(n, "N(n—7)+ U(n, m+1)M(n—m). G(n,m) given in

(3.1), G(n,m)= H|(n, m). Thus, we can obtain the result of Corollary 3.2 from Lemma 3.1.

Remark 3.3. For all %, G(%,%) given in (3.2) has a k-variate geometric distribut ion

with mean vector (py !, -, 05 V).

Lemma 3.4. Suppose that M(1),---,M(1) are associated and that for all #,
Ni(n),--,N(n) are associated. Then for all positive integers m, # and all integers
ny<ny<--<n,, the random variables {G,(n;, m), i=1,---,k; j=1,---,7} are associated.

Proof. By Barlow and Proschan((1975 b), Theorem 22, p31 and Proschan 4, p.30) the

random variables M{n,), N{n;,q),i=1,,k; j=1,-,», and g=1, -, m are associated.
We define the following the random variables S;= G{n;, m), i=1,--,k; j=1,-,7 since
Gn;m),i=1, k,j=1,,r are nondecreasing functions of collection of associated

random  variables. If for j=1,-,7, " and 4 are nondecreasing functions, then
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I(G\(n;,m), -, Gn;,m)), MGy (n;,m) ,-,Gn;,m)) are nondecreasing functions of

(#;,m). Thus by definition of association (2.3), Covg(IX.S), 4(S)) = Cov(IXG), 4(G)) =0.

Lemma 3.5. Suppose that M;(1),---,M,(1) are associated and that for all #,
Ny(n),,NA(n) are associated. Then for all positive integers # and all integers
1, <ny<---<m,, the random variables { G{#n;, o), i=1,---,k; j=1,-,#} are associated.

Proof. Let m be a positive integer. Since lim(1—e{(n)" < lim(1-p)"=0, j=
1,2,k lim G(n,m)="G(n,o). In particular since G(n, m)—G(n, ) converges in
distribution as #m—00, the sequence

{Gi(ny,m), -, Gny,m), =, G(n,,m), -, G(n,, m)
converges in distribution as m—o0 to
{Gi(n,0), -+, Gny, ), -, Gi(n,,®),,Gn,, o)}
By Lemma 34, the {G(n;,m), i=1,2,-,k j=1,-,7} are associated for all m.

Consequently, the result of the lemma follow by Esary et al.(1967), Py.
4. Inequalities in Models

Throughout this section we fix m, m=1,2,---,00, and hence suppress it from our notation,

that is, G(n, m) is denoted by G(#).
In the point process theory of the models, the behavior of the vector of sums
To(N=(T¢(r),, Tere)

where Tg(7)= g}Gi(n), i=1,2,---,k are of interest, 7,7, € {1,2,""-}.

For example, if G(#n) is a vector of k—variate geometric waiting times of a count process
Ng(#n)=(Ng (7),*", Ng(rp)) which are the number of occurences by trials 7,7,
e {1,2,---}, then Ng(r)=Tc(r), i=1,2, k.

We now utilize positive dependence properties to obtain weakly probability inequali
ty for sum T¢(7). First, we define the positive orthant dependence and new concepts of

weakly positive orthant dependence.

Definition 4.1. Let £=2,3,-:-, and let X=(X;,---,X,) be a random vector. We say that
X is positively upper(lower) orthant dependent (PUOD(PLOD)) if for all real number f#;, -, £,
P(Xl >fl,"',Xk>fk)2P(X1>f1)"‘P(Xk>fk) (41)
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[P(Xl < tl,,XkStk) ZP(XIStl)P(XkStk)] (41)’

and we say that X is positively orthant dependent(POD) if they satisfy both PUOD and
PLOD.

Definition 4.2. Let £=2,3,---, and let X=(X,,--+,X},) be a random vector. We say that
X is weakly positive upper(lower) orthant dependent of the first type (WPUODI1(WPLODI)) if

for all real number ¢, -, ¢,

fx fx [P(X, > t, -, X >t) — (X > 8)P(X,>t)]dty-dt, =0 4.2)

[ f:o---f:o[P(Xl <, XaSty) — X0 <t) P(X, <ty]dty-dt, >0 (4.2)'

and we say that X is weakly positive upper(lower) orthant dependent of the second type
(WPUOD2(WPLOD?2)) if for all real number ¢, -, %,

[ [ PG > o X ) = POX > 1) P(X > 1) dt-dty 20 (4.3)

[ f_;---f_;[P(Xlsr1,~~-,ngtk) = (X <t)P(X,<tp)]dty-dt =0 4.3)

Also, we say that the random vector X is weakly positive upper(lower) orthant
dependent(WPUOD(WPLOD)) if they satisfy both (4.2(4.2)’) and (4.3(4.3)"). Moreover, we say

that the random vector X is weakly positive orthant dependent(WPOD) if they satisfy both
WPUOD and WPLOD.

Remark 4.3. (a) If X=(X,, -, X,) is associated, then clearly X is POD, (b) X is POD,
then X is WPOD but WPOD does not imply POD and (c) Let fi,, fu:

(—o0,00) —[(0,) be measurable nondecreasing(nonincreasing) functions and let X=
(X,,-+, X4) be PUOD(PLOD), then Elf[lfi(Xi) > Ilefi(Xi), (d) Let the random variable

{Gn), i=1,2,--k ;n=1,2, -+, q}, g=1,2,-~+ are associated.  Then for 7,
e €{1,2, kY {Te(r),i=1,2,--"} or {Ng(7;),i=1,2,---} is associated.

We obtain the following theorem for the sums Tg(7)
Theorem 4.4. Assume that a,(n), -, (%) are equal to a,,--, @, respectively, for all
n, Let NM{(r;,8;), i=1,2,-, k be negative multinomial random variables with parameters

(7;, ;). Then
TG,v(ri) 2 NMI’(r[’pl'ai_l); i=1,2,"',k
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If in addition, the random variables {G{#), i=1,2,--,k n=1,2,-"-,q}, q=1,2,--+, are

associated, then for a; > 7y,**, a, > 7y,
ft ft [P(TG,(VI) > CZ],"',TG,,(?’/@) > dk)— leIP(NMi(rz'» D,‘ai—l)>a,~)]dak"~da120 (4.4)

[ftw-nftm[P(TGl(rl)sal,---,TG*(rk)Sak)— ZIjIP(NM,-(rl-, .Dia’i_l)ﬁaz)]ddk"'daIZO](4.4)’

and
4 b
f_m"‘f_oo[P(Tcl(rl) > d1,"‘,Tck(7’k) > dk)_ ZIjIP(NMi(Ti, pz'ai_l)>az')]dak'"da120 (45)

t 1
[f—t.”.f—-oo[P(TG’(rl)sal'-“’ TG,,(?’k)SCZk)— IIjIP(NMi(ri’piai_l)gai)]dak"‘ddlz()](llﬁ)'

Proof. From the equations (3.1) or (3.2) we see that G,.%) = N(n), i=1,- k;

n=1,2,---. Hence

K(To(r) = a)=P( X Gin) = a)

>P( N (n) > a)

=P(NM;(7;, pia; ') = a), i=1,2,,k
and the first assertion is proved. Secondly, let f;=x{T¢(r)<a;},i=1,"-+, k where x is
the indicator function. Then f;, 7=1,---, &k are associated since the random variables
T (7)), -, T¢(rp)are associated(Remark 4.3(c)). Hence

0= Contri, W)= B - EAETL S,

Repeated applications of this argument yield

OSEIIJJ[,"‘ JjEf;’

- Elljx HTe(r)<a;}— le]EX{ Te(r)<a;)
= P( T1(7”1)>a1, . Tk( 7k)> dk) —P( T1(71)> a})'“P( Tk( 7};)) ak)

Thus the random variables
T (7)), -, Tg(7y) are PUOD and the proof of PLOD is similar to the proof of PUOD.

Consequently, equation (44) and (4.5) follow from the first assertion and the fact that since
T (r1), -, Tg(7y) are POD they are WPOD (Remark(4.3(b)).
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