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Bayesian Model Selection for Support Vector Regression
Using the Evidence Framework
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Abstract

Support vector machine(SVM) is a new and very promising regression and
classification technique developed by Vapnik and his group at AT&T Bell
Laboratories. In this paper we provide a brief overview of SVM for regression.
Furthermore, we describe Bayesian model selection based on MacKay’s evidence
framework for SVM regression.

1. Support Vector Regression

The foundations of SVM have been developed by Vapnik(1995) and are gaining popularity
due to many attractive features, and promising empirical performance. In SVM there are two
types, ie., support vector classification(SVC) and support vector regression(SVR). SVM was
developed to solve the classification problem, but recently it has been extended to the domain
of regression problems. However, SVC can be viewed as a special case of SVR. This section
gives an overview of SVR for readers new to this rapidly developing field of research. For
more details, see Gunn(1998) and Smola & Scholkopf(1998). First, we review linear SVR.

Suppose we are given training data {(x;, v,), i=1, -, n} C¥ XR, where ¥ denotes

the space of the input vectors, R?. Our goal is to find a function f(x) that has at most &
deviation from the actually obtained targets y;’s for all the training data, and at the same
time, is as flat as possible. We now take the form

fx) = w'x+ b with we¥, beR
where superscript ¢ represents the transpose of a vector. Flatness here means that one seeks

small w. One way to ensure this is to minimize the Euclidean norm | w | °. Formally we
can write this problem as a convex optimization problem by requiring:

minimize % | wl ?,
subject to v; — w'x; — b < & and w'x,+ b — v < €

The underlying assumption here is that the convex optimization problem is feasible.
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Sometimes, however, this may not be the case, or we also may want to allow for some
errors. To make it feasible, we introduce slack variables &, £. Hence we arrive at the

formulation stated in Vapnik(1995, 1998).

minimize 1 | wl®+ C23(&+ &), W
yvi—wx,—b < e+ &

subject to w'x,+b—y, < e+ &
&, & =0

The constant C> (0 determines the trade off between the flatness of f and the amount up to
which deviations larger than e are tolerated. Here, &, & are slack variables representing

upper and lower constraints on the outputs. The formulation above corresponds to dealing

with a so called &-insensitive loss function | &| . described by

|E|€:{0 if 16] <e

| £] — e otherwise
The key idea is to construct a Lagrange function. Hence we proceed as follows:

L= Jlwl®+ C§(5¢+Ef)— 2:1&,-(6+E,-—yi+ w'x,+b)

- z‘af(e—i‘ E+yi—wix,—b)~— z(méﬁ 7 £7)

We notice that the positivity constraints a;, a;, 7;, 7: =0 should be satisfied. Hence we

arrive at the optimization problem below.
maximize — ;12‘\ (a;—aiXa;— o)) xix; — 62_11 (a; + a7) + Z}yi(ai— a;),

subject to Z(a/i— @)=0 and «;, a; € [0, C]

Solving the above equation with these constraints determines the Lagrange multipliers,

@;, a;, and the optimal regression function is given by

I

w z‘(ai—ai)x,-, b= —Jw'lx,+x,],
where x, and x, are support vectors. Therefore, the optimal regression function can be

rewritten in the form of
Ax) = g;@,.— axix+ b (2)

The Karush-Kuhn-Tucker(KKT) conditions that are satisfied by the solution are,

~

al'a?:09 i=1,"',n.
Hence the support vectors are points where exactly one of the Lagrange multipliers is greater
than zero.
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Next, we consider nonlinear SVR. How can the above methods be generalized to the case
where the regression function is not a linear function of the data? A rather old trick can be
used to accomplish this in an astonishingly starightforward way. First notice that the only

way in which the data appears in the training problem is in the form of dot products xfx I
Now suppose we first mapped the data to some other (possibly infinite dimensional) Euclidean
space E, using a mapping which we will call @: R! - E.

Then the training algorithm would only depend on the data through dot products in E, ie.

on functions of the form @(x,)'®(x;). Now if there were a "kernel function” K such that
K(x;, x;) = ®(x;) ' ®(x,), we would only need to use K in the training algorithm, and

would never need even to know explicitly what @ is. The kernels often used are given
below.
x— 2

K(x,y)=(x'y+1), K(x,y)=e 2

Here, p and ¢ are kernel parameters. The kernel approach is again employed to address the

curse of dimensionality. The nonlinear SVR solution, using an &-insensitive loss function, is

given by
maximize — + 21 2 (a;—ai)Xaj—aj)K(x;, x;)— ¢ i“ (a; +a?) + i“yi(ai— a;),
=1;= = =

subject to Z‘(a,- —a;)=0 and a,, o = [0, C]

Solving the above equation with these constraints determines the Lagrange multipliers,

@;, a, and the optimal regression function is given by

w= (@, -aho(x), b= —} 3 (- a) [K(x, x)+K(x,, x.)]
Therefore, the optimal regression function can be rewritten in the form of

fx) = 33 (= aDK(x, )+ b &)

The difference to the linear case is that w is no longer explicitly given. However, it is
uniquely defined in the weak sense by the dot products. Also note that in the nonlinear
setting, the optimization problem corresponds to finding the flattest function in feature space,
not in input space.

For regression problem, there are three parameters need to be tuned, the size & of the

insensitive zone, the constraint parameter C and kernel parameter. In SVR, it is known that
kernel selection as well as the appropriate kernel parameters gives a significant effect on the
SVR. Three parameters will affect the final model complexity, and therefore should be used in
mode] selection. Model selection in SVM is still an open issue.
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There are actually three situations for each coefficient @;: 0< ;< C, ¢;,=0 or a;= C. In
the last two situations, the coefficient hits the boundary and does not provide much

information. In terms of free parameters, only when (< @;< C it counts as free.

2. The Evidence Framework

The evidence framework divides our inferences into three distinct levels of infrence. For
details, see Bishop(1995) and MacKay(1992, 1995). A model H is assumed to have a m

—-dimensional parameter vector w. This model is defined by its functional form and two
probability distributions: the distribution P{(D | w, A, H) that the model makes about the
data D when its parameters have a particular value w,; and a prior parameter distribution
P(w| A, H) which usually has the form given by P(w | A, H)=exp(—AEw(w))/Zy(R),

where A is a regularization parameter.

2.1 Level 1 Inference

At the first level of inference, we assume that one model H is true and A is given, and
we infer what the model’s parameters w might be given the data D. For a given value of
A, the posterior distribution of w is given by

Plw|D,A,H)=P(D| w,A, HYP(wl| A, H)/P(D| A, H)
Substituting in P(w | A, H) above, it can be shown that finding the most probable estimate

wyp of w is the same as minimizing

Mw)=AEy(w)—log P(D| w, A, H). (4)
2.2 Level 2 Inference

The second level of inference determines the value of A by maximizing the posterior
distribution of A given by
P(A|D,H)=P(D|A, HYP(A|H)/P(D| H).

When P(A| H) is flat, the evidence P(D| A, H) can be used to assign a preference to
alternative values of A. By approximating the posterior distribution of w by a single

Gaussian at w yp, it can be shown that

log P(D| A, H) = —AEy" + Egf — Llogdet(A) + 2 log A, (5)
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where A= v’M, Ep(w)=1logP(D| w, A, H), and EY and EXM are the values of

Ew and Ep evaluated at w yp.

2.3 Level 3 Inference

At the third level of inference, we wish to infer which model is most plausible given the
data. The posterior probability of each model is given by
P(H| D)< P(D| H)P(H).
The third level of inference ranks different models by examining their posterior probabilities
P(H| D). Assuming a flat P(H) for all models, different models can be rated by their

evidence P(D| H). We now assume that the evidence maximum can be well approximated
by a Gaussian. Then we have

P(D|H) = P(D|Ayp, H)/V 7,

where 7 is the effective number of parameters.
3. Applying the Evidence Framework to SVR
In this section we describe Bayesian model selection based on the evidence framework.
Namely, we illustrate that training of SVR can be considered as the level 1 inference of the

evidence framework. Furthermore, we illustrate how levels 2 and 3 can be applied to SVR.

3.1 Level 1 Inference for SVR

The first level of inference determines w. To determine w, we minimize (1). For a fixed

C, minimizing (1) is equivalent to minimizing

2
AwlZ oy 2‘1(61~+E?), ©6)
2C =
We now use the probability model with the prior distribution P{w]| C) exp(——"—lu)

2C
for w and the probability distribution exp (—& — &) for each pattern. Then the log data
likelihood is logP(D | w) = — Z“ (& + &) by assuming that the patterns are iid. Thus,
putting A= 1/C leads (6) to the form of (4). In fact, we notice that minimizing (1) can be

regarded as performing the level 1 of inference under this probability model.

3.2 Evaluation of the Hessian
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We now compute the hessian matrix A= VM= vi(AEw + x2:1(.{-',-+ £)). We know

that computing the hessian matrix for neural network is very complicated. But, we will see it
is much simpler to compute the hessian matrix for SVR than for neural network. We know

that &;, & measures the difference between y; and w'z,+ b. Here, we use 2z, to cover

both linear and nonlinear cases. Thus, we have

& = step(y,— y)(yi— yi—€)
" & = step(v;i— y;)(y,—v:—¢€)

where y;=w'z;+ b and step(x) is the step function. By the way, step(x) is not
differentiable. Thus, we approximate it by the sigmoid function g(x)=1/(14+e *). Since
vy,=z; and V’y,= O, we obtain V2&=d(y,—vy,)z,zi and V& =d(y,—y)z;z!.
Here, O is zero matrix and d(x) = {(x—e¢e) g (x) +2g(x). Finally, we have A=AI+ B,
where B = g diz;zt and di=d(|y;— y;]).

We now compute the eigenvalues e, of B. For the linear case, we put z,= x,;. Then,
computing eigenvalues p, is straightforward. However, we need something more for the
nonlinear case. Thus, we will explain how to compute eigenvalues p, for nonlinear case. We

know the training algorithm depends on some kernel function. Thus, we should put

z,= O(x;) for some @. Let e, be the eigenvectors of B. Then we have e,= z‘tukizi
for some constants #,; and pszek=z,'»Bek. This leads o, Ku,= KK u,, where
wpy=(wup, -, Up)', K is the nXn matrix with elements z/z;= K(x;, x;) and K°
is another #X#n matrix with elements a’,-zfz,-= d;K(x;, x;). In general, we can assume

that K is invertible. Hence, we have p,u,= K" u,, and obtain the eigenvalues {7,} of

A as y,= A+,
3.3 Level 2 and 3 Inference for SVR

At the level 2 of inference we determine the value of A by maximizing P(D | A, H) in
(5). Recall that P(D | A, H) is computed by approximating the posterior distribution of w
by a single m-dimensional Gaussian at w yp. Here, m is usually very large, depending on
the chosen kernel function. In this case, only a subspace of w will be affected by the data
likelihood, and we argue that the Gaussian approximation is valid only in this subspace. Thus,
we replace m in (5) by the number of significant eigenvalues, N in K * . Moreover,

det( A) in (5) can be readily computed given the eigenvalues 7y, of A, and we get
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log P(D|A,H) = —AE¥+ EM - 1 log l‘iyﬁ— 2 log 4

1=

At the level 3 of inference we compute P(D | H). By the way, we know P(D| H) =
P(D|Ayp, H)/V y. Thus, to obtain the model evidence P(D | H), we have to calculate

the effective number of parameters, 7. It can be written in terms of the eigenvalues of B,

p;, where the subscript ¢ runs over the N eigenvectors. The eigenvalues of A are A+ p;,

so we have:

y= N=Atrace(A™) = N= 314/ (ort D) = 2o/ (0,4 2).

4. Choosing the Kernel Parameter

This section discusses how to determine the kernel parameter /%, for example polynomial
kernel p. We usually use the model evidence P(D | H) and mean square error to determine
h. For fixed h, we compute model evidence and mean square error in the iterative manner
as described above. We can choose /% which maximizes model evidence and minimize mean

square error. The evidence framework allows automatic adjustment of the kernel parameter
to their near-optimal value.
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