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Linear versus Non-linear Interference Cancellation

R. Michael Buehrer, Steven P. Nicoloso, and Sridhar Gollamudi

Abstract: In this paper we compare linear and non-linear inter-
ference cancellation for systems employing code division multi-
ple access (CDMA) techniques, Specifically, we examine lincar
and non-linear parallel interference cancellation (also called multi-
stage cancellation) in relationship to other multiuser delection al-
gorithms. We show the explicit relationship between parallel inter-
ference cancellation and the decorrelator (or direct matrix inver-
sion). This comparison gives insight into the performance of paral-
lel interference cancellation (PIC) and leads to better approaches.
We also show that non-linear PIC approaches with explicit chan-
nel estimation can provide performance improvement over linear
PIC, especially when using soft non-linear symbol estimates. The
application of interference cancellation 10 non-linear modulation
techniques is also presented along with a discussion on minimnm
mean-squared error (MMSE) symbol estimation techniques. These
are shown to further improve the performance of parallel cancella-
tion.

Index Terms: Parallel Interference Cancellalion, Multiuser Detce-
tion, Partial Interference Cancellation, Minimum Mean-squared
Error (MMSE) Symbol Estimation, Linear CDMA Interference
Suppression, Multistage Receiver.

L. INTRODUCTION

Multiuser detection has been proposed as a means of improv-
ing the capacity of code division multiple access (CDMA) sys-
tems relative to the conventional receiver [1]-[4]. The conven-
tional receiver for CDMA is a multi-finger Rake receiver using
filters maiched to a particular spreading code on each finger,
equal gain (or maximal ralio) combining, and square-law (or
coherent) symbol detection. Unlike the conventional receiver,
multiuser detectors attempt o detect all CDMA signals simul-
taneously, taking into account the structure of the received sig-
nal. The conventional receiver treats multi-access interference
(MAI) as additive white Gaussian noise (AWGN). This is a rea-
sonable approach duc to the fact that CDMA interference is
compriscd of contributions from many independent interferers,
and during despreading, the contribution of each signal is ran-
domized by the correlation of the various spreading codes. As
a result, MAI will appear as a single additive noise source. It
is thus the average interference that limits CDMA system per-
formance, rather than the worst case interference as with or-
thogonal access systems. However, the MALI is not true AWGN
since it is predictable or at least has known properties that can
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be exploited. The exploitation of this information is the idea
behind multiuser reception, allowing greatly enhanced link per-
formance.

The terms multiuser detection and interference cancellation
are often used interchangeably. For the sake of this discussion,
we reserve the term interference cancellation for multiuser de-
tection techniques which attempt to estimate the interference,
regenerate it, and cancel it through subtractive means. Mul-
tiuser detection however, will refer to the more general detec-
tion algorithms which use some knowledge of the interference
to improve performance. Linear interference cancellation algo-
rithms are techniques which attempt to regenerate and cancel
interference in such a way that the final decision statistic is a
linear function of the matched flter outputs. Linear multiuser
detection algorithms also create decision statistics which are a
linear combination of the matched filter outputs, but are not ex-
plicitly attempting direct subtractive cancellation. We will show
that these techniques are intimately related. Non-linear tech-
niques are any techniques which use non-linear functions of the
matched filter outputs.

Parallel interference cancellation (PIC), also known as multi-
stage detection, is one form of interference cancellation which
is applicable to a wide variety of CDMA system designs (e.g.,
long or shorl spreading codes, linear or non-linear modulation).
Significant research has been done in this area over the last sev-
eral years on the both linear and non-linear PIC [5]-[8]. In this
work, we first examine linear PIC and show how it relates to
other linear multiuser detection algorithms including the decor-
relating [9] and MMSE [10] receivers as well as a linear form of
successive interference cancellation [11]. We then discuss non-
linear PIC and compare its performance with linear PIC as well
as other non-linear interference cancellation algorithms. Non-
linear PIC has the requirement that it requires chanpel estimates
for cancellation purposes while linear PIC does not. However,
this requirement does provide potential performance improve-
ments, particularly when non-linear symbol estimation is used.

We first present the CDMA system model in section II upon
which all discussion is based. In section I1I, we put PIC into a
conlext of linear multiuser detection algorithms by first consid-
ering linear interference cancellation. Specifically, we show the
mathematical relationship between PIC with other linear mul-
tiuser detection, most importantly the decorrelator and linear
MMSE receiver. This relationship provides insight into the ulti-
male performance and limitations of linear PIC. Decision statis-
tic bias motivates a discussion of partial interference cancella-
tion which is shown to mitigate the bias problem. Limitations of
PIC, however, can also be mitigated in part by simply removing
the linear constraint on PIC and considering non-linear methods
of PIC. This we do in section TV.

Section IV considers non-linear PIC and compares jts per-
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formance and complexity to lincar cancellation as well as other
non-linear multiuser detection techniques. Relaxation of the lin-
ear constraint offers the important ability for a PIC receiver to
decouple channel and symbol estimation, allowing them to be
considered separately, and motivates a description of MMSE
signal reconstruction for PIC. Given the MMSE criterion, we
examine the non-linear MMSE (optimal) symbol estimators for
lincar modulation (c.g., BPSK), and for non-linear modulation
derived in [12]. The MMSE symbol estimate for linear modu-
lation is shown to provide some performance gain over a hard-
limited non-lincar estimate. With non-linear modulation, viz.,
M-ary orthogonal modulation, it is shown to provide much
more substantial gains. Issues arising from decoupling the chan-
nel estimation block are also considered. Non-linear PIC is
shown not only to out-perform linear multiuser detection tech-
niques (including lincar PIC) in most circumstances, but also to
be more widely applicable to actual CDMA systems.

II. SYSTEM MODEL

To clarify the representation developed used in this paper we
begin with a mathematical model of the CDMA sysiem under
consideration. The received CDMA signal is represented by

R
r(1) = >V Pebr(t — i)kt — T)e!™ +no(t), (1)
k=1

where R users are independently transmitting bi-phase modu-
lated signals, F, is the power received’, by (t) is the data signal
with symbol period Tj, s (t) is the spreading signal with chip
width 77, and 7y, is the relative delay of the kth user. The com-
plex Gaussian noise process 7, (t) has power o, and the spread-
ing gain is defined to be N = % Note that we have assumed
perfect timing acquisition (i.e., 7 71) and phase distortion
due 1o the channel and imperfect down-conversion is constant
over the observation interval.

The phase-compensated output of a filter matched to the kth
user’s spreading waveform, after the ith bit interval (assuming
perfect carrier and PN code phase tracking) is represented by

1 /in +Th
To J(-1)Ty 4

where R(-) is the real operator. This leads to a vector repre-
sentation of matched filter outputs corresponding to the ith bit
interval,

yip =R r(6)si(t — 1, — iTy)e 4% dy

@)

vi=R(-DA,_1b,_1 + R(OA;b, + R(1)A;+1bir1 + 1y,
(3)

where y, = [yi1,¥2,--- 7%7[{]1 ,R(m).,m € {-1,0,1}, is
a K » A matrix that represents the partial correlation between
users over the mith relative bit interval (i.e., between the ith bit of
user j and the (i 4+ m)th bit of user £)[13], A; is a diagonal ma-
trix with vector [a; 1, a2, - - - ,a;, x| along the diagonal where

I Note that for casc ol unalysis we have assumed throughout that [% is constant
over the observation interval, i.e., we have ignored the effect of multipath fading.
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a; r = /Pr(t),t = iT; is the received amplitude of the kth
user, (-)T is the transpose operator, b; = bi1.bi2,... ,b,,’K]T,
and n; = [n;1,7m,2,... ,0;,x)" is a vector of fillered noise
samples. Note also that equation (3) assumes perfect phase in-
formation, 1.e., 6 = 0. This assumption is made for notational
convenience in the next section. However. we will drop this as-
sumption when we discuss linear interfercnce cancellation.

Given a sequence of Ny, data symbols from each of K users,
we represent the sequence of matched filter outputs by

y =RAb +n, €h)

where y = [y?,y%,...y%,]%. b and n are similarly defined,

Aisa KN, x KN, diagonal matrix with [A1, As, ..., Ap,]T
along the diagonal, and
R(0) R(-1) 0 e 0
R(1) R(0) R(-1) :
R=1 0 R(1) RO 0 - (3
: - . R(-1)
0 - 0 R(1) R(0)

Note that while the definitions of R and R imply short, i.e., non-

time-varying or “code-on-pulse,” spreading sequences, lech-
niques in the proceeding discussion do not require such an as-
sumption. This is intended merely to simplify notation.

Finally, there will be times when we will not wish to assume
that phase compensation is performed on the matched filter out-
puts, Thus, we define

1 /‘in+7k
Ty Jii—1yTy+m
Additionally, we define &;; = a; e’
and y and A represent the veclor versions of §;  and @;  in a
manner similar to y and A.

r(t)sp(t — 7 — iT})dt (6)

Yk =

or 'gi,k = yi,keje"'.

III. LINEAR CANCELLATION

Multiuser detection schemes can be grouped into two broad
categories, linear and non-linear [2]. The former category con-
tains the decorrelating receiver [9] and the linear MMSE re-
ceiver [9], [10]. These receivers use knowledge of the spread-
ing codes of all users (with the exception of adaptive MMSE
receivers [14]) to create a linear transformation that projects
each signal onto a subspace dependent upon design criteria. The
decorrelator removes the effects of MAIT by projecting the sig-
nal of interest onto a subspace which is orthogonal to the entire
interference subspace. Since this subspace is not in the same
direction as the desired signal, the decorrelator suffers a loss of
desired signal energy and thus the performance versus thermal
noise degrades. However, the recciver does eliminate the effect
of interference. The MMSE receiver alleviates this drawback
by projecting the desired signal in a direction which minimizes
the combined effect of MAI and thermal noise. An additional
benefit of the MMSE structure is that it can be implemented
adaptively and blindly [14].
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In general, a linear detector (assuming BPSK signaling) is one
that makes decisions based on

b =sgn(Ty) D

= sgn(T(RAD - n)), '
where T is a linear operator on y. Using near-far resistance”
to drive suboptimal® receiver development, Lupas showed that
a linear receiver can obtain the near-far resistance of the opti-
mal receiver [13]. The linear detector that accomplishes this is
the decorrelating detector. Viewing the matched filter receiver
oufputs as the output of a linear system, the decorrelating detce-
tor simply performs a direct matrix inverse of system transfer
function R. In other words, T = R~ which leads to

b = sgn(R~'y)

(8)
= sgn(Ab + R~ 'n).

Since R as defined is simply the normalized cross-correlation
between the users’ spreading codes, the decorrelator is indepen-
dent of the received user energies. Because of this. the decorre-
lator is the optimal linear receiver for unknown signal cnergics™
[13]. This obviates the need for estimates of the channel to re-
move the effects of interference, although phase cstimation is
obviously still required [or coherent detection. Additionally, (8)
clearly shows that the data estimate is independent of the inter-
fering powers thus providing near-far resistance.

There are, however, two main disadvantages of the decorre-
lating receiver. The first is the need to calculate the inverse of
the cross~correlation matrix in order to obtain the decorrelation
coelficients. The second is that in high noise situations, receiver
performance degrades due to the correlation introduced in the
noise. This noise enhancement is analogous to that seen with a
zero-foreing equalizer for inter-symbol interference (IST), where
the application of a channel inverse creales correlated noise sam-
ples. With the decorrelator, this effect increases noise power in
proportion to the cross-correlation between users. To show this,
we define X, = varly |b, A] and

£, =E[yy"] -EE[y"]
=E [(Ab + R 'n)(Ab + R™'n)"] — (Ab)(A4b)*

= ABEnT(R™HT + RIEMmb" 4" 9)
+ R—].E I:nnTj[ (R— ]_)T
— 0_27;)4—1’

2Please see [15] for a definition and discussion of ncar-far resistance.
3The optimal receiver is the general maximum likelihood receiver, i.e. the
receiver which chooses b as

b=arg min ;
bE{—1,1}¥

T ,
/“ Ir(2) — S(B))* i,

- , A . g
where },(b) = 5‘:1 Zii—l\/f \/P];bk [’Z,J]J'[ (t -7 - Tk)&k((» - Tk)-
“That is it chooses

b= arg min min
be{-1,1}& l_lf’x-

/OT [r(6) — S(b)]° dt.
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where we have used E[n]=0 and E[nnT] = ¢?R, and o2 is the
power of the AWGN at the receiver. Thus the decorrelation pro-
cess, although removing MAI, enhances the noise.
In [16], linear detectors based on MMSE are proposed. Such
a detector atlempts 1o minimize
E|(b-b)*(b—b)|, (10)
where E[] is the expectation operator and b = sgn(Ty) for

some linear transformation T. The linear transformation T
which attains the minimum value is

N —1
T:<R+2A°2> : (11)
This leads to the decision rule
n N{J !
b = sgn <R+ 2,43) y (12)

From (11) we can see that for N, ~ 0 (i.e., low noise situa-
tions) the MMSE and dccorrelator are identical. In the opposite
extreme (V, extremely large), the MMSE detector reduces to
the conventional receiver. Like the decorrelating receiver, the
MMSE receiver obtains optimal near-far resistance, however,
unlike the decorrelator it requires knowledge of the received
USET energies.

A. Relationship Between PIC and the Decorrelator

Generally speaking, parallel interference cancellation uses es-
timates of the channel along with tentative symbol estimates to
iteratively remove the cffect of inlerference on each desired sig-
nal. The decision rule at each stage (iteration) for PIC with
BPSK signaling is represented in matrix notation by
b = sgn [zfi*}

- FUE (13)
= sgn [('RAb +n— ’PAb) A*] )

where z is the decision statistic, P = R — Z, T is the iden-
tity matrix, 4 is an cstimate of the diagonal matrix of complex
amplitudes A, b is the estimated data symbols. For linear soft
decision cancellation we set the initial combined estimate Ab
equal to the complex correlator outputs ¥ resulting in the deci-
sion statistic after one stage of cancellation®

z® = RAb + n— Py

. 14
— [£ —P]RAb + [Z — P]n. (1

Subsequently using Ab = z(?) in the second stage stage of can-
cellation results in

d =T -P+PIRAb+ [I-P+P 0 (15
Further, it can be shown that in general
2 =7 (RAb +n), (16)

Note that we now drop the assumption of channel phase knowledge being
incorporated in the matched filter (correlalor) outputs and vse § rather than y.
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Fig. 1. The degree to which S-stage linear parallel interference cancel-
lation approximates the decorrelating receiver as the average nor-
malized cross-correlation increases. (synchronous system, stage
1; conventional receiver, norm(TR-I) represents the residual cross-
correlation after cancellation.)

where 7% is a linear transformation at stage S determined by

5-1

T =3 " (-1)*Ppe.

=0

(I'7)

Now, if we allow the number of stages to approach infinity we
obtain

5-1
: (&) — 13 _1\E DS
S 7 = Jim 3 (0P
S:Ol (18)
=(P+1I)”
:R_l

provided |[P||s < 1.° Thus, in the limit the PIC receiver has a
decision statistic equal to
lim z*) = Ab+ R~'n

S—o0

(19)

which is equivalent to the decorrelating receiver, the same con-
clusion reached in [17] and [18]. The number of stages nec-
essary for a good approximation depends on the total cross-
correlation between users (i.e., system loading) as will be
shown.

To investigate the number of stages needed for convergence,
simulations were run for a synchronous system with various
loading levels, random spreading codes and a spreading gain
of N=064. The results were averaged over 1000 simulation
runs. Fig. 1 shows the Frobenius norm of the approxima-
tion error, ||[T9)R — I||p versus the total normalized cross-
correlation measured by ||R — Z||2 for a synchronous system.
The error can be interpreted as the residual cross-correlation af-
ter the transformation (i.e., after cancellation), since it will de-
pend on the off-diagonal elements. For perfect decorrclation,

6Note that this is true for any matrix norm. The requirements for convergence
arc examined in more delail in section [[[-B.1.

10 T T
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Fig. 2. The probability of error for 5-stage parallel canceliation vs. in-
terference power for several values of S as the ratio between the
interfering power and the desired power increases. (stage 1: con-
ventional receiver, I7, /N, = 5dB, N = 15, P3 = [.)

7 = R7Yand ||TR - I||[r = 0. This plot shows that as
the total system cross-correlation increases (meaning that either
the system loading increases or the spreading gain decreases),
more stages are required to obtain the same residual interfer-
ence level. This error is most meaningful in ncar-far situations
where small amounts of cross-correlation can result in signifi-
cant inlerference levels. In other words, as the system loading
increases, more stages are required for accurate approximation
of the decorrelating receiver. As the total normalized cross-
correlation approaches unity, the lincar PIC receiver will not
converge to the decorrelator. This will be discussed further in
section ITIT-B.1.

While the previous results provided insight into convergence,
they do not translate directly into BER performance. Thus. sim-
ulations were run to determine the probability of error perfor-
mance of S-stage parallel interference cancellation in the pres-
ence of strong inlerference as the number ol slages or iterations
increases. Fig. 2 presents simulation results for the case of 3
users, a spreading gain NV 15 (random codes), and asyn-
chronous reception. Signals 1 and 3 are perfectly power con-
trolled to provide a received Ej /N, = 5dB while the received
strength of signal 2 is allowed to vary from -10dB to 20dB rel-
ative to signals 1 and 3. The average probability of error for
signal 1 is plotted for several stages along with the conventional
receiver (stage 1), the decorrelator, and the single user bound.
As we would expecl, the convenlional receiver [ails in the pres-
ence of significantly strong interference. As S increases. the
robustness to interference strength is increased. For § = 15 we
see that performance is independent of interference power over
the range of interest and equivalent to the decorrelator. Note that
the performance is slightly degraded compared to the single user
bound due to the noise enhancement suggested by equation (9)
[13].



B. Matrix Interpretation of PIC

The previous section showed that linear PIC will approach the
decorrelating receiver for a sulficient number of stages and given
cerlain conditions on the cross-correlation between spreading
codes. This leads to the investigation of PIC in terms of solv-
ing linear systems, i.e.. using a matrix interpretation’. In the
following section we show that linear PIC is equivalent to the
Jacobi iteration method of solving linear systems, This leads
one to investigate other methods of solving linear systems as
forms of interference cancellation. Specifically, we formulate
Gauss-Seidel iterations and gradient search methods in terms of
interference cancellation in this section.

B.1 Jacobi Iterations

One method of solving a linear set of equations Mx = c is
the method of Jacobi iterations. If we rearrange the linear set of
equations it can be shown that

(c.,-, - Z#i mij:):j)
€T; = s
Ty,

(20)

where m;; is that element in the sth row and jth column of M.

. L . (0
Given an initial estimate of x;, denoted rE )

calculate &; by

, we can iteratively

( L “A(k—:l))

Ci— D Mk

fi‘z(-k) _ ? FES R _ @n
mi;

Al convergence

$=D"'(c-(M-D)%), (22)

where D is a diagonal matrix with the diagonal elements of M.
Solving for x gives

x=M"tc. (23)
Thus, provided that the iteration converges, we will arrive al the
linear system solution. In terms of BPSK modulated CDMA?,
we consider the system

¥ =RAb +n, (24)
where ¥ = ¥;,Vi, A = A;,Vi. R = R(0), and n = n; are
the synchronous equivalents, i.e., 7, = 0,Vk, of the variables
defined in section 1. Consider the problem of solving for R™*y
by using the iteration in (21). This leads to the decision statistic

A =53 puty, (25)
i
where p;; are the elements of R, p;; = 1 V1, and zzgo) =y, In
matrix form we have
AP =5 - (R-1)§. (26)

7 At the time of submission it was brought Lo our atention that [19] also shows
that paralle] cancellation can be formulated in terms of matrix algebra.

8Here we assume synchronism for notational convenience, but it s not re-
quired.
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It can be shown that
k

Y =3 (1) (R-1)'F,

=0

27)

which is identical to the linear PIC receiver described in sec-
tion I1I-A. Thus, when using matched filter outputs directly as
interference estimates, PIC is linear and identical to the Jacobi
iteration method of solving a linear system.

This equivalence provides some insight into the performance
of linear PIC using soft estimates. First, we can gain an under-
standing of the applicability of PIC implemented in this manner
by examining the convergence properties of the Jacobi iteration
method. Rewriting equation (27) in recursive form we can state
the PIC method as

7zt — _pgt) 4 . (28)

where P = R — I. Now at convergence z = R~ 1y. However,
the iterations will converge iff v (P) < 1 where v(P) is the
spectral radius of P, i.e.,

~(P) =max{[\: X ¢ A(P)} (29)

and A(P) are the eigenvalues of P [20]. Thus, the solution will
only converge to the direct matrix inversion (i.e., the decorre-
lator) if the matrix R is diagonally dominant, where diagonal
dominance is defined as

K
Slpigl<lpil=1  i=12.,K (30)
j=1

e

In other words, PIC formulated in this way will converge as the
number of stages increases if the total cross-correlation between
any spreading code and all other codes is less than unity. This
is a fairly strong requirement, especially with random spreading
codes, and indicates that this implementation of PIC will not
likely be useful for even a moderate number of users.

Another interesting note about linear PIC [rom this analysis is
that channel knowledge is not required for cancellation’. Phase
information is required for detection in equation (13) (and Rake
combining in a multipath scenario), but for cancellation pur-
poses no channel knowledge is necessary. This can be seen in
cquation (27) and is because only the complex matched filter
outpuis are used along with knowledge of R. Additionally, if
DPSK modulation were used no channel knowledge would be
required at all since b = R{z[i]z[i — 1]*].

B.2 Gauss-Seidel Iterations

The previous investigation leads one to consider other ma-
trix inversion (or linear system) techniques. One technique that
is sirnilar to the Jacobi method, but has faster and more global
convergence is Gauss-Seidel iteration, Gauss-Seidel iterations
are defined by

_ il () K (k1)
o <C7 — o maEy = i Mty

& , (D)
;i

9By channel information we are referring to knowledge of the random ampli-

tude/phase distortion caused by the channcl. Timing information iy still neces-

Kary.
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Fig. 3. Performance of Jacobi (JIC) and Gauss-Seidel (GSIC) based
cancellation techniques in AWGN channel. (synchronous system,
random codes, spreading gain N = 64, E,/N, = 8dB, random
phase - direct inverse (decorrelator) shown for comparison.)

where we now use the latest information in the calculation of the
current cstimate. Putting it in terms of BPSK. modulated direct
sequence CDMA (DS-CDMA), we form a decision statistic of
the sth user at the kth stage as

(32)

EK: {
k=1
pm-zj ) .

i—1

k . k
Zf ) = Yi — Zf)v‘,,jzj(- ) -
j=1 F=i4+1

We can also state the method in matrix form to show its similar-
ity to Jacobi iterations;

Z(k-‘r]) — _Gz(k) - yj (33)
where G = (R — U)™1U and
0 pis MK
0 0
U={[9¢ o PR—9 K (34
: PR—1,K
o 0 -~ 0 0

In a method analogous to the above discussion, it can be shown
that this method converges to z = R™1§ iff A(G) < 1. It
can be shown that this condition is met if R is symmetric and
positive definite. Thus, this method will converge under more
general conditions than the Jacobi method.

This technique is similar to linear successive interference can-
cellation (SIC) (see [11], [21]) with the following cxccptions:
(1) cancellation using Gauss-Seidel iteration is performed mul-
tiple times for each user whereas it usually performed only once
with SIC'?: and more importantly (2) the Gauss-Seidel iteration
scheme does not require ordering to improve reliability at each
cancellation. Thus, STC is formulated as

190ne exception is [22].
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Fig- 4. Performance of linear successive interference cancellation us-
ing one symbol estimates for cancellation in AWGN channel. (syn-
chronous system, random codes, spreading gain N = 64, Ey/N. =
8dB, random phase; for Avg. Powers, ordering done on average
power basis; for correlator, ordering done on basis of correlator out-
puts after each cancellation.)

i—-1
zi =i — Z ZiPij (35)
=1

where the order of cancellation is based optimally on reliabil-
ity but can also be based on average powers [21]. The former
ordering method provides superior performance but requires re-
ordering after each cancellation.

Fig. 3 presents the simulated performance of interference can-
cellation based on Jacobi iterations (JIC) and Gauss-Seidel iter-
ations (GSIC) for a synchronous system in an AWGN channel
with N = 64, £,/N,=8dB, random spreading codes and ran-
dom phases. Several things can be noted. First we can see that
JIC performs very poorly even at moderate loading as predicted.
However, GSIC performs very well and converges to the decor-
relator in all cases, This is not surprising since the Gauss-Seidel
algorithm is known to converge for any initial vector provided
the system matrix is symmetric and positive definite which is the
case of R. A second item to note is that since the decorrelator
does not provide the best performance of any linear detector (the
MMSE receiver generally provides better performance), GSIC
actually has better performance prior to convergence in some
high loading cases. This will be discussed more later.

As a comparison, Fig. 4 presents the performance of SIC im-
plemented with linear cancellation estimates as given in (35).
Again the system is synchronous with an AWGN channel, N =
64, E,/N,=8dB, random spreading codes and random phases.
Two ordering techniques are used: (1) ordering based on average
powers and (2) ordering based on reliability. As expected, reli-
ability ordering outperforms ordering based on average power.
Additionally, we can see that SIC with reliability ordering out-
performs GSIC shown in Fig. 3. As points of comparison, STC
with reliability ordering achieves a BER of 1073 with a loading
of 20 users and a BER of approximately 10~ at a loading of 50
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users. GSIC, however, achieves 2 - 1072 and 3 - 10~ BERs at
loadings of 20 and 50 users respectively.

B.3 Gradient Search Methods

A third common method of solving linear systems are the gra-
dient search techniques. Il can be shown that the equation

1
#(x) = zxTMx — xHe

5 (36)

is minimized when x = M~'c where M is real and positive-
definite. Thus the minimization of (36) is equivalent to solv-
ing Mx = ¢. There are two common methods of minimizing
(36): the method of steepest descent and the mcthod of conju-
gate gradients''. Both techniques use the negative gradicnt of
the current estimate to choose a new direction for each iteration.
However, the method of steepest descent uses the negative gra-
dient directly as the new search direction. The cost function (36)
is then minimized in that direction to establish a new estimatc.
This new estimate is then used to calculale the next gradient.
The process continues until a minimum error is calculated or
the process reaches a fixed number of iterations. The shortcom-
ings of this technique are well known [20]. Since the method
is restricted to search in directions orthogonal to the previous
estimate, convergence is slow. |

In terms of multistage interference cancellation we can view
the gradient method of steepest descent by defining the negative
gradient § = —V¢(z) and writing the decision statistic at stage
k as

z#) =21 4,8
_— Z(k—l) -+ ap (5’ — RZ(k_1)>

= 04§ — (R - 1) 24D,

(37)

Ut should be noted that these two methods were investigated independently
for the application of CDMA detection in [23].
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where vy, is deflined to minimize the error at each step, ay =
(z*=INTzh=1) /(z(*=1)TRg*-1) Thus, this technique is
similar to linear PIC as defined in (28) with the exception that a
weighting factor ay is used at each stage. Note that this method
will converge provided R is not singular, although convergence
time is directly related to the eigenvalue spread of R.

Fig. 5 plots performance results using this method in the same
system as the previous examples. It can be seen that the perfor-
mance is identical to the decorrelator al low users for a relatively
small number of stages (under 10). As the loading increases,
the number of stages requircd to approach the decorrelator iri-
creases. An interesling phenomenon is that the performance at
10 stages is superior to the performance at later stages. We will
address this in a moment.

A method that speeds up the convergence in gradient search
techniques is to allow subsequent search directions to be non-
orthogonal. Rather, subsequent directions are conjugate, that
is they satisfy the relation x/"Rx;=0, ¥{i,7 : 1 # j}. Thus,
minimization in one direction does not interfere with minimiza-
tion in previous directions. This allows convergence in K steps
where K is the dimension of R. Like the previous technique
this can be thought of in terms of interference cancellation. The
cancellation is similar to the stcepest descent except that in ad-
dition to performing a weighted cancellation at each stage, a
recursively estimated vector is also included in the cancellation.

The performance of the two gradient-search-based cancella-
tion techniques is given in Fig. 6 as the number of stages is
increased. The system is synchronous with an AWGN chan-
nel, oy, /N,=8dB, 60 uscrs, N = 64 random codes and random
phases. It can be seen that the conjugate gradient based cancel-
lation method converges within 60 stages, as expected while the
steepest descent based algorithm requires 2000 stages to con-
verge. An interesting result from Fig. 6 i1s that the gradient
searches pass through “superior” solutions during convergence.
That is the BER performance can be better before convergence.



BUEHRER ¢ if - LINEAR VERSUS NON-LINEAR INTERFERENCE CANCELLATION

—T— T T T o o

Direct Inverse (decar )
MMSE

Conpugare Gradient
Steep Descent

N P
el
L T
o' y: ]

o

Probzbilly of Bi Earor

___________ R T MK - K R _

107 — - ' L L L L L
5 10 15 20 26 30 35 44 45 50
liengtigng

Fig. 7. Performance of “leaky” steepest descent algorithm and conjugate
gradient algorithm vs. the number of stages of cancellation in AWGN
channel. (synchronous system, random codes, spreading gain N =
G4, Iy /No = 8dB, 60 users, e = 0.07, random phase; direct inverse
(decorrelator) and MMSE algorithms shown for comparison.)

This is simply due to the fact that the decorrelator (direct ma-
trix inversion) is not the optimal solution. In fact, at high load-
ing lactors the decorrelator provides performance that is signifi-
cantly worse than the linear MMSE solution,

The performance of the gradient search algorithms can be un-
derstood as follows. The performance of the decorrelator is re-
lated to the decision statistic

z=Ry=b+R 'n (38)
Thus, the values of the diagonal of R™! are crucial as they will
enhance the noise level, since they will be larger than unity. Fur-
ther, these values will be directly related to the eigenvalues of
R~! which are the inverse of the eigenvalues of R. To improve
performance it is preferable not to include those components
in the inversion which lcad to large noise enhancement. Thosc
components are the eigenvectors of R which have the smallest
eigenvalues. However, the gradient search tends to find these
modes last. The eigenvectors that have large eigenvalues will
be captured first and relatively quickly. Thus if the search is
stopped early before the other eigenvectors are found, perfor-
mance is improved. In other words, if we limit the number of
slages we improve the performance.

Rather than limiting the number of stages, another method
to prevent convergence to the decorrelating solution is to add a
“leak™ to the gradient. That s,

Vo(z) =5 — Rz — ez. (39)

This results in the cancellation scheme defined by
2" = 0,5 ~ (R + (eap — D) 2571, (40)
Note that the gradient can be rewritten as Vo(z) = ¥ —

(R + €I)z showing that the algorithm will now converge to
z=(R+ D)7'§. If e = 0.502/a? the algorithm converges
to the linear MMSE solution. Fig. 7 shows the convergence of
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Fig. 8. Performance of pseudo-inverse vs. eigenvalue threshold in
AWGN channel, (synchronous system, random codes, spreading
gain N = 64, E,/N, = 8dB, random phase; direct inverse (decorre-
lator) and MMSE algorithms shown for comparison.)

the steepest descent algorithm with a leak of € = 0.07 for the
same system parameters as Fig. 6. As expected, the algorithm
converges to the MMSE solution. Since the leak adds a con-
stant to the eigenvalues of R, it sets a floor on the minimum
eigenvalue and prevents the large noise enhancement, improv-
ing performance. Another consequence is that convergence is
relatively fast (within 10 stages).

B.4 Pseudo Inverse Technique

The previous section showed that il a lcak were added to
the convergence of the gradient search algorithm. the solution
will not find the eigenvectors corresponding to the eigenvalues
smaller than the Jeak size. Since these values are the source
of the noise enhancement at large loading factors, performance
is improved. Another method of accomplishing this task is 1o
calculate a pseudo-inverse of R throwing away values from the
singular value decomposition (SVD) below a certain threshold.
Fig. 8 plots the performance of the pseudo-inverse as the SVD
threshold is varied from 107 to 102. again for the same system
parameters as Figs. 6 and 7. Note that by removing the eigenvec-
tors corresponding to the smallest eigenvalues from the inverse
(between 1077 and 10™1), the performance of the decorrelator
can be improved by an order of magnitude.

B.5 Comparisons

A plot comparing each of the previously discussed linear can-
cellation techniques is presented in Fig. 9. It can be seen that
the MMSE solution essentially underbounds'? the performance
of the linear cancellation techniques investigated. However, we
see that the cancellation technique based on the gradient search
can achieve the performance of the MMSE receiver. This perfor-
mance requires either (1) the algorithm is stopped at the correct

L2To within the accuracy of the simulated BER estimates. Additionally, the
MMSL receiver is not necessarily the linear recciver which achieves minimum
BER [24].
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stage or (2) a leak is included in the cancellation with the appro-
priate leak size. The knowledge necessary for the latter option
18 similar to the knowledge required for a direct MMSE solu-
tion, viz., the SNR. It appears that stopping the algorithm after
10 stages for steepest descent based or 5 stages for conjugate
gradient based provides the best performance over all loadings
considered. This will be directly related to the SNR which may
be known in the average sense if a power control algorithm is
employed.

It should be noted that each of the interference cancellation
approaches investigated in this section do not require explicit
channel information to perform cancellation. Phase knowledge
is required to perform detection since coherent modulation is
used, but no channel knowledge is used for cancellation. This
can be most clearly seen from equations (27) and (33). This may
seem somewhat counter-intuitive for a cancellation approach.
However, this i1s obvious when one realizes that each of the
“cancellation” approaches was trying to approximate the decor-
relating receiver which requires only spreading code and timing
information of the interferers (beyond what is required for the
matched filter). Channel knowledge would be required for the
MMSE receiver and is thus helpful for implementing the leak
in the gradient-search-based approaches since the leak ‘ideally
should be related to the SNR.

C. Another View: The Bias Problem

A major result of the previous section is that linear parallel
interference cancellation (i.e., PIC using only linear soft esti-
mates), is equivalent to the Jacobi iteration method for solving
% = R™'y. This equivalence indicates that linear PIC will
have poor performance at high loading factors since the Jacobi
method will not converge if R — I has an eigenvalue with ab-
solute value greater than one. Another way of examining the
performance of linear PIC is to examine the decision statistic. It
can be shown that the decision statistic of linear PIC after can-
cellation is no longer unbiased. To show this we consider the
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phase corrected output of the matched filter for user 1

y1=/Piby + I +my. (41)
Assume for the sake of clarity a synchronous system such that
R =R(0) = R, I; and ny represent the interference and ther-
mal noise seen in the matched filter output of user 1 and we
ignore the dependence of y on the bit number. Note that y; is
not independent of {&;,}. i.e., the data symbols of the interferers,
due to the dependence of I; on {b;}. Thus, when the set {y},
2 < k < K is used as estimates of {agby } to cancel interference
from g7, the cxpected value of y; after cancellation will be less
than +/P; b; due to the dependence of each ;. on by. To demon-
strate this we take the expected value of g, -AI} conditioned on
by. First, recall the definition of T using fgbr = yr and using
external phase estimates:

K
fl = Zg;‘ cos (qb;,, — Qf)l)ﬂl,k

=2

K
= Z v Prby cos (¢, — d1) p1.x

=2

K
+ Z Z V Pibipy,., cos (b — di) | cos (d — 61) p1.s

k=2 | itk

K
+ > g cos (¢ — d1) pLi-
=2

(42)

Thus, the expected value of 37 ~— I, conditioned on by is given
by (43) as shown at the bottom of the next pagc, where for syn-
chronous transmission pr,) = gy 4 and var(p; z) = Jiv [25] and
we have defined 7, = ny — 21{;2 ng cos (dr — d1) prg. As
the system loading grows, the decision statistic after one stage
of cancellation becomes more biased toward the decision bound-
ary resulting in decision errors if only one stage of cancellation
is performed. If multiple stages of cancellation are used, this
error will be compounded in future stages. This reduction in the
mean of the decision statistic can be devastaling to performance
as will be seen. This insight provides the motivation for a final
linear cancellation technique, partial PIC.

D. Partial Cancellation

One method of overcoming the problem of decision statistic
bias in linear PIC is to perform partial interference cancellation
[26], [27]. In partial interference cancellation, wec multiply the
estimate of the channel and symbol by a factor, &, less than unity.
By attempting to cancel only part of the inter(erence we intro-
duce only part of the bias. By keeping the bias small at the first
and second stages of cancellation, overall performance is im-
proved. By the third stage, a partial cancellation factor is usu-
ally no longer needed since the bias becomes insignificant at this
point.’* A second bencfit of this approach stems from the fact

137t can be shown that the bias is inversely proportional to the stage of cancel-
lation.
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that the reliability of the symbol decisions (and thus the chan-
nel estimate) is lower at initial stages of cancellation. When we
consider that cancellation based upon an incorrect symbol esti-
mate adds interference, partial cancellation mitigates this effect
by reducing the penalty associated with incorrect symbol deci-
sions. This can reduce the mean square error between the actual
and estimated signals [8].

Partial cancellation is performed by multiplying the estimated
signal by a factor less than unity prior to cancellation. That is

k k=1
29 =y =3 a2V
J#i

(44)

If we include a cancellation factor £) in the preceding derivation
of (43) we find that the bias in the decision statistic after one
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stage of cancellation is
W] = S (1K1
E [zi } =+ PFb; (1 & N ) -

Fig. 10 plots the normalized (with respect to /P;b;) histogram
of the decision statistic after one stage of cancellation when
using linear soft symbol estimates with partial cancellation
[actors as in equation (44) with & =1 (full cancellation) and
£={0.8,0.5,0.3,0.1}. Also ploited is the normalized his-
togram of the matched filter outputs (i.e., before cancellation).
These histograms were taken from a simulation of 55 simul-
taneous, synchronous BPSK DS-CDMA signals operating in
AWGN with %28&3 and a spreading gain of 64. Full cancel-

(43)

lation results in a large bias in the statistic (7 — f] = 0.58).
Using a partial cancellation of 0.1 nearly eliminates the bias
y — I = 0.96). but does not significantly reduce the vari-
ance as compared to stage 1, since little interference is removed.

Using a factor of 0.8 both improves the mean (y; — 1 = 0.66)
and reduces the variance when compared to full cancellation. A
factor of §; = 0.5 appears to provide the best performance in
this situation. This improved performance is then passed to later
stages as demonstrated in the results of Fig. 11.

Fig. 11 shows the simulated performance of parallel cancel-
lation for one, two and four stages of cancellation using a one
symbol linear estimate with and without a partial cancellation
factor. For the partial cancellation approach, the cancellation
factor is £=0.4 in the first stage and £=0.8 at the second stage
(further stages use £ = 1). We can see that partial cancellation
dramatically improves performance. There are several interest-
ing points made by this figure. First, note that for high loading
full cancellation, L.e., £ = 1, performance is severely degraded,
while partial cancellation degrades more gracefully. Moreover,
the performance is degraded so much in the first stage that ad-
ditional stages worsen system performance as predicled by our
analysis in the last section. Finally, it should be noted that at a

K K
E [y1 —I ‘bl] =k [\/ Piby + Z v Piby cos(pr. — d1)pg + 1y — Z V Pibr cos(dy — d1)p1g
k=2 k=2

K
=Y > V/Pibicos(¢s — ér) cos(dr — $1)priprs —

k=2 ik

fl

=2 itk

K
=E|/Pb — Z V/ Pibippap1 x cos® (b — o)
=2

K
E {\/Ebl -2 V/Pibi cos(¢i — ox) cos(dr — ¢1)prapri + in

K

Z Tk cos(¢l.: - (bl)p]_k

k=2
b]:l

y

(43)

o
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low number of users, partial cancellation performs worse than
full cancellation after only one stage. This is due to the fact that
the receiver is not cancelling as much interference as it could re-
liably. In other words, the partial cancellation £ is too small for
low loadings. Optimizing £ to loading would improve perfor-
mance. However, note even at this low number of users, the bias
reduction in the first stage, causes performance in the second
slage to be improved over full cancellation.

IV. NON-LINEAR CANCELLATION

In this section we investigate the performance of PIC when
the linear constraint is relaxed. This allows non-linear symbol
cstimates to be used, but also makes an explicit channel esti-
mation block necessary for cancellation. In section IV-A we
first describe a non-linear MMSE'? symbol estimator for linear
modulation schemes such as BPSK. Then in section TV-B we
consider the effect of channel estimation on performance. Sec-
tion IV-C expands the results of IV-A for BPSK. to non-lincar
modulation techniques. Section IV-D cxtends these results fur-
ther to the far more common conditions of Rake reception of
CDMA signals. Finally, section IV-E presents a few simulation
results which lend support to the theoretical development pre-
sented.

A. Non-linear Symbol Estimation

The most obvious non-linear symbol estimate is to simply
hard limit the maiched filter output. This requires a separate
channel estimation block, but will improve PIC performance
provided the channel estimate is of reasonable quality. A better
symbol estimate, however, is one that minimizes the effect of
symbol estimation errors on system performance. It was shown
previously that partial cancellation could significantly improve
system performance, which suggests a search for an “optimal”
symbol estimate.

L4Note that unlike the MMSE estimator discussed in section TT1, this is a non-
linear MMSE estimator.
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In order to minimize the effect of incorrect interference es-
timation, we need 1o minimize a meaningful measure of the
reconstruction error at the output of the reconstruction block.
A natural and intuitive cost function is the mean-squared error
(MSE). Consequently, the design problem for the reconstruction
block in the frst stage under the unconstrained (not constrained
to be linear) MMSE critlerion can be posed as follows: Given the
received vector r, i.e., a sampled version of (1), compute user

k’s received signal estimate Fj, that minimizes £ { l|lrp — T l|§ },
where ||x||, is the 2-norm of vector X , and E {-} is the expec-
tation operator.

The objective therelore is to compute

f‘k, = }Lk (I‘)7 (46)

where

b =a‘rgmgnE{[|rk —h(r)||;}. 47)
The well-known solution to the non-linear MMSE estimation
problem in the case of scalars is the conditional mean estimator
128]. Note the difference between the above equation and (10).
Using a straight-forward extension of this result to the case of
vector estimation, the non-linear MMSE estimator for user k’s
received signal is given by

f‘k = }L};(I') = E{I‘H I‘} . (48)
It is shown in [8] and [12] that (48) evaluates to
£ = drbpsk = Gk tanh (%’EW)) Sk, 49
k

for BPSK modulation, where @, = \/JD_kejok is the complex
channel induced upon the transmitted signal of user £'°, sy is
the spreading sequence, o7 is the variance of interference plus
noise seen by channel k, 7. is the matched filter output, and f)k
is the MMSE symbol cstimate.

This solution suggests the intuitively satisfying result that
user k’s signal should be reconstructed by passing the correlator
output g, through the hyperbolic tangent nonlinearity, scale it
with the complex amplitude @, and respread it with the spread-
ing code s; . The hyperbolic tangent function increases mono-
tonically from -1 at negative infinity to +1 at positive infinity.
It may be observed that the optimal reconstruction block dif-
fers from that in the conventional non-linear PIC in that the
hard-limiter is replaced by a sigmoidal nonlinearity, The sig-
moidal nonlinearity endows the non-linear reconstruction block
with the MMSE property.

We examine the performance of non-linear PIC using a
hard-limit symbol estimate and the MMSE symbol estimate in
Fig. 12. In this simulation a synchronous system is again as-
sumed with tandom phases, an AWGN channel, random spread-
ing codes, B;/N,=8dB, and N=64. Perfect channel knowl-
edge is assumed. The performance of both the hard and soft
non-linear symbol estimation approaches perform significantly

13 Channel coefficient G4 would, in licu of genie assistance, have to be oro-
vided by a separale channel cstimation block.
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better than the linear approach (without partial cancellation) as
shown in Fig. 11. Additionally, we see that MMSE symbol es-
timation provides some performance advantage. At a BER of
10~2, MMSE cancellation provides a 5-10% improvement in
the number of supported users as compared to hard symbol esti-
mates, Note that the extension to Rake reception is discussed in
section IV-D.

B. Charnnel Estimation

By decoupling channel and symbol estimation, some method
for explicit channel estimation is now clearly required to per-
form interference cancellation. The results of section IV-A as-
sumed channel knowledge was provided by a genie. In scction
111 it was shown that linear PIC produces a biased decision statis-
tic after one stage of cancellation. It can be shown that bias
also occurs in non-linear estimation when correlator outputs are
used for channel estimation. This bias is directly related to the
number of symbols used to estimate the channel. Thus, for an
v-symbol channel estimate (averaging or lincar regression meth-
ods), the bias may be reduced by a factor of ».

The performance of non-linear symbol estimation combined
with channel estimation is examined in Figs. 13 through 15.
The performance of hard-limit symbol estimates with channel
estimates created using a six-symbol average are presented in
Fig. 13. The system is synchronous, with an AWGN chan-
nel, N = 64, E;/N,=8dB and codes are random [rom sym-
bol 1o symbol. Note that the performance of non-linear PIC
with hard estimates and channel estimation degrades when com-
pared (o perfect channel knowledge as presented in Fig. 12, This
degradation is due to both channel estimation error and decision
statistic bias. The latter effect is evident by the performance
of partial cancellation with six-symbol estimation also given in
Fig. 13. We see that the performance of partial cancellation is
improved significantly compared to full cancellation when chan-
nel estimation is based on correlator ontputs. Again, the use
of correlator outputs biases the decision statistic after cancel-
lation. This bias can be eliminated by using outside channel
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estimates or mitigaled by using partial cancellation. It should
also be noted that in the absence of decision statislic bias, par-
tial cancellation provides some benefit due to the reliability of
the symbol estimates [29], [8].

The effect that channel estimation has on the MMSE symbol
estimate is shown in Fig. 14. The system is synchronous, with
an AWGN channel, N = 64, E)/N,=8dB and the codes are
random from symbol to symbol. The MMSE symbol estimate
was derived based on perfect knowledge of the channel. When
the channel is estimated, the MMSE property no longer holds.
Thus, the performance is degraded more than the hard-limit es-
timate as seen by comparing the performance with Fig. 12

Finally, we examine the performance of non-linear successive
interference cancellation. In Fig. 15 we present the performance
of successive cancellation when hard estimates of the symbols
are used along with six-symbol averages of the correlator out-
puts for channel estimation. Non-linear estimation provides sig-
nificant improvement in the performance relative (o the linear



130

=)
b
T

Probability of Error
\
A

|

\X

106 ,// k
e
— / -
e e Matehed Fillar

G—&  Suce Cancel - Avg Powar
H— Succ. Gancel - correlator

10-4 Il B Il L - I. L

[ 10 20 30 40 50 &0 70

Simultaneous Users

Fig. 15. Performance of successive interference cancellation using six
symbol estimates for cancellation in AWGN channel. (synchronous
system, random codes, spreading gain N = 64, E,/N, = &dB,
random phase; for Avg. Powers, ordering done on average power
basis; for correlator, ordering done on basis of correlator outputs
after each cancellation.)

estimation examined in Fig. 4, when ordering is based on reli-
ability. Note that the performance is unchanged when average
powers are the basis of ordering. This is because in an AWGN
channel all users are received with equal average powers. Thus,
the ordering criterion equates to random ordering. The reliabil-
ity criterion requires significantly more computations since reli-
abilily must be re-evaluated after each cancellation, but provides
far superior performance.

C. Non-linear M -ary Orthogonal Modulation

The previous discussion focused on lincar modulation tech-
niques, specifically BPSK. However, it is useful 1o explore the
effect of non-linear modulation. With non-linear modulation,
the linear multiuser detection techniques discussed earlier such
as the decorrelating and lincar MMSE receivers are not appli-
cable. However, techniques such as non-linear PIC or SIC are
appropriate. In this section we focus on the application of non-
linear PIC to M -ary orthogonal modulation.

M -ary orthogonal modulation involves mapping a block of
log, M bits on to one of M codewords, each M bits long, tak-
ing values from {—1,+1} and orthogonal lo each other. In
CDMA systems, the resulting bit stream consisting of the M-
ary symbols (or codewords) is then spread by multiplying with
the spreading code and transmitted on a carrier. The set of M
orthogonal codewords is usually chosen to be Walsh-Hadamard
codes of length M. With such modulation, the received signal of
the first user can be written as 1 = d1x; = @191 Wi, , where
S, is a diagonal matrix with the spreading code s) on its diag-
onal, W = [wy,wa,... ,WM] is a matrix whose columns are
the M Walsh codes, i; is an indicator vector that picks the trans-
mitted symbol from the Walsh matrix W and &, is the complex
channel distortion. If the mth Walsh code is transmitted by user
1, then i, = e,,, where e,, is the mth column of the MxM
identity matrix, so that Wi, is the symbol that is transmitted.
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The received vector r can then be represented by

r=a 8 Wi, +v, (50)
where v = ry + ... + rx + n, is the interference plus noise
component of the received signal. Let the number of samples in
one Walsh symbol be NV;, so that the received signal r and the
Walsh code vectors are all N;-dimensional. Equation (48) can
be used again lo find the non-linear MMSE estimate of r1 as
follows:

f']_ =E{I‘1|I‘}:(3,|S|_WE{i1|I'}. (51)
The solution for this estimate is similar to thal presented in sec-
tion IV-A, only much more involved. It is shown in [12] to be

P = @S Wi, (52)
. . . AT
where iy = [iklniszy e a":L:M} ,and
T = exp{R(G;Tmm ) /0k } m=1,2,..., M. (53)

Tl exo{®(a}dia) /o2 }

Equation (53) suggests the following steps in the optimal re-
construction of the kth user’s recejved signal:

1. Despread the received signal to form S7r

2, Compute the complex correlations of the despread signal

with the M Walsh symbols to form the matched filter out-

put §, = WH(SZy). This can be efficiently computed
using the Fast Hadamard Transform (FHT).

Pass the correlator outputs through sigmoidal nonlinearities

given by (53) to obtain iy, , the vector of weights associated

with each of the M symbol waveforms in the reconstructed
symbol waveform.

4. Combine all the M symbol waveforms weighted by the
corresponding elements in iz Lo obtain the reconstructed
symbol waveform Wi,. Observed that this amounts to
computing the inverse FHT (IFHT) of i;,. The IFHT, which
is the same as the FHT within positive scaling, can therc-
fore be used to efficiently computc the reconstructed sym-
bol.

5. Spread the reconstructed symbol by multiplying with the
spreading code and scalc it by the complex channel ampli-
tude @y .

W

D. Extension to Rake Reception of Non-linear Modulation

The problem of optimal reconstruction for PIC with M -ary
orthogonal modulation with Rake receplion is now considered
in this section. Let ¥, v(® . . r{L) be the received signals
from L Rake fingers, The vectors are formed aflter individually
synchronizing time for the L paths. The [th received signal is
given by

MO =00y a0 =12 L (9
where rg) is the kth user’s received signal and n() s the noise
on the [th finger. The problem now is to find the non-linear
MMSE estimate of the kth user’s received signal in the [th path,
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given the received signals on L fingers of the Rake. In a manner
similar to that presented in section IV-C, the solution may bc
found by considering
(1 D=1} ~(2 - (L
0~ B (05050, 50, 69
where y}d” = (SkW)H rg), I=1,2,...,L, are the correlator
outputs in the L finger of the Rake, each similar to ¥, in section
IV-C for a singlc path reception. The solution in (55) is now
evaluated for the case of M-ary orthogonal modulation., With
M -ary orthogonal modulation,
) = alls, Wiy, (56)
Denoting ¥; = [yﬁj),y,&”, . ,ym and applying (56), (55)

can be rewritten as

i) = oSy WE {i,|fi }. (57)
It follows that the optimal reconstructed signal can be expressed
by

2 = a8, Wiy, (58)
where i, = F {i;C |1}k} is the cstimate of i;. Note that, since i
is independent of [ , the reconstructed symbol will be the same
on all the fingers. The correlator outputs for the kth user are
given by

7O =ali +vi =12 L (59)

As is the case in single path reception, note that the inter-
ference plus noise vector v,(f) is zero-mean Gaussian with in-
dependent components, cach with a variance cril, and is inde-
pendent of the transmitted symbols. Further, it may be assumed
that the interference plus noise vectors in different fingers of the
Rake are mutually independent. Since i; can select any of the
columns of the M x M identity matrix with equal probability,
we have

M
=B {4V} =) emPlin=enlfil  (60)
m==]
The non-linear MMSE estimator for the kth user’s received sig-
nal in the [th path, with M -ary orthogonal modulation and a
Rake receiver with L fingers, is shown in [12] to be

) = a8 Wi, (61)
H T x T
where 1 = [Zm,%kg,... aZkM] ,and
E . exp(zm) _ 1 2 M
km = T exp(zg) m =1, 4, y IV
L %{ﬁ‘,’;(l)ﬂ](clgz (62)
Zm :Zl:l““—a_-il—y m=1,27...,M.

Concerning equations (61) and (62), we make the following ob-
servations:
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Fig. 16. Probability of bit error for parallel interference cancellation when
64-ary orthogonal modulation is used and hard or soft symbol esti-
mation is employed.

1. The statistic z,, used in the computation of the MMSE
reconstructed signal is simply the coherent maximal ratio
combination (MRC) of L Rake fingers.

2. It follows that the correlator outputs on all Rake fingers
should first be computed and then combined by MRC.
The resulting statistic should then be passed through a sig-
moidal non-linearity to obtain the reconstructed symbol.
The reconstrucied symbol waveform should then be appro-
priatcly delayed, spread and scaled by the complex ampli-
tudes on all the fingers to obtain the multipath received sig-
nal estimates. Note that all the fingers use the same recon-
structed symbol, though delayed and scaled differently.

E. Simulation Results

To verify the results given in preceding sections, PIC with
both MMSE and hard-limit symbol estimation has been simu-
lated for an asynchronous DS-CDMA system employing M -ary
orthogonal modulation with M = 64. QPSK spreading was
used with chips drawn from {e/™/4, ¢/37/4 o=in/4 e=idn/4}
The number of PN chips per Walsh symbol was 256. Estima-
tion of the complex channel amplitudes was conducted using a
six-symbol average. The BER versus number of users is plot-
ted in Fig. 16. Again, although the MMSE derivation assumed
perfect channel knowledge, we have used a realizable channel
estimate. However, even without perfect channel knowledge, it
is clear that the MMSE symbol estimate provides large perfor-
mance gains over hard-limiting.

V. CONCLUSIONS

In this work we have examined linear and non-linear interfer-
ence cancellation techniques. The linear techniques are derived
by exploring the relationship between PIC and the decorrelalor
(i.e., viewing PIC as a form of matrix inversion) and by exam-
ining the decision statistics after cancellation. It was shown that
the linear techniques based on matrix inversion algorithms will
converge to the decorrelator (with the exception of cancellation
based on Jacobi iterations at moderate to high loading) for suffi-



cient stages. In high loading scenarios, however, the decorrela-
tor performs significantly worse than the linear MMSE receiver.
Linear interference cancellation techniques approach the linear
MMSE solution prior to convergence. Thus, limiting the num-
ber of stages can improve performance. Some knowledge of the
channel SNR is useful when determining the number of stages,
similar to the knowledge needed for the linear MMSE receiver.
Partial cancellation techniques based on decision statistic bias
removal can also provide better performance than linear PIC
without partial cancellation at lower computational cost. Ad-
ditionally, it was shown that linear cancellation techniques can
be applied which do not require phase/amplitude channel knowl-
edge for cancellation. If non-coherent detection were employed,
cancellation receivers can be employed which require only tim-
ing knowledge (as well as knowledge of the spreading codes).
Non-linear techniques were also investigated and the nomn-
linear MMSE symbol estimate for BPSK as well as M -ary or-
thogonal modulation were presented. It was shown that the use
of MMSE symbol estimates rather than a hard limit estimate
can provide performance improvement especially in the case of
M -ary orthogonal modulation. It was shown that partial cancel-
lation is also useful in non-linear PIC due to the bias introduced
through the channel estimate as well as symbol reliability. The
gains of partial cancellation with hard-limited symbol estimates
were similar to the gains seen by using MMSE symbol estima-
tion for BPSK modulation. In general, non-linear techniques
improve performance at the cost of higher computational com-
plexity as well as a requirement for explicit channel estimation.
We conclude that linear techniques are likely to be most use-
ful when computational limitations are more strict or when non-
coherent detection is used. Since the linear techniques do not
require explicit channel knowledge (outside of timing) they are
more appropriate when channel estimation is not practical. Non-
linear cancellation will provide superior BER performance but
will require higher computation and explicit channel estimation.
Additionally, non-linear techniques are applicable to a larger
class of modulation schemes, including non-linear modulation.
Also, partial cancellation can provide significant benefits in both
linear and non-linear PIC with little computational burden.
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