A Study on the Microstructure and Adhesion Properties of Sn-3.5Ag/Alloy42 Lead-Frame Solder Joint

Sn-3.5Ag/Alloy42 리드프레임 땜납접합의 미세조직과 접합특성에 관한 연구

  • Kim, Si-Jung (Dept. of Electronic Materials Engineering, Suwon Unicersity) ;
  • Bae, Gyu-Sik (Dept. of Electronic Materials Engineering, Suwon Unicersity)
  • 김시중 (수원대학교 전자재료공학과) ;
  • 배규식 (수원대학교 전자재료공학과)
  • Published : 1999.09.01

Abstract

The microstructure, wettability, shear strength and aging effect of Sn-3.5Ag/Cu and Alloy42 lead-frame solder joints were measured for comparison. In the case of Sn-3.5Ag/Cu, $Ag_3Sn and Cu_6Sn_5$ phases in the matrix Sn and $1~2\mu\textrm{m}$ thick $Cu_6Sn_5$ phase at the interface of solder/lead-frame were formed. In the case of Sn-3.5Agl Alloy42, only AgJSn phase of low density in the matrix Sn and $0.5~1.5\mu\textrm{m}$ thick $FeSn_2$, phase at the interface of solder/leadframe were formed. Comparing to Cu, Alloy42 showed wider area of spread and smaller contact angle, thus better wet­tability. But shear strength and ductility of Alloy 42 solder joints were only 33% and 75% of those of Cu, respectively After aging at $180^{\circ}C$ for 1 week, $\xi-Cu_3Sn$ layer on $\eta-Cu_6Sn_5$ layer was formed on Cu lead-frame, while coarsened cir­cular $Ag_3Sn$ phase in the matrix and thickened $FeSn_2$, at the interface were formed on Alloy42 lead- frame.

Sn-3.5g 무연합금을 Cu 및 Alloy42 리드프레임에 납땜접합 (solder joint)하고 미세조직, 젖음성, 전단강도, 시효 효과를 측정하여 비교하였다. Cu의 경우, 땜납의 Sn기지상안에 Ag(sub)3Sn과 Cu(sub)6Sn(sub)5상이, 그리고 땜납/리드프레임의 경계면에는 $1~2\mu\textrm{m}$ 두께의 Cu(sub)6Sn(sub)5 상이 형성되었다. Alloy42의 경우, 기지상내에 낮은 밀도의 $Ag_3Sn$상만이, 그리고 계면에는 $0.5~1.5\mu\textrm{m}$ 두께의 $FeSn_2$이 형성되었다. 한편, Cu에 비해 Alloy42 리드프레임에서 퍼짐면적은 크고 접촉각은 작아 더 우수한 젖음성을 나타내었으나, 전단강도는 35%, 연산율은 75%로 낮았다. $180^{\circ}C$에서 1주일간 시효처리 후, Cu 리드프레임에는 계면 $\eta-Cu_6Sn_5$ 층외에 $\xi-Cu_3Sn$층이 성장하였고, Alloy42 리드프레임에는 기지상내에 $Ag_3Sn$이 구형으로 조대하게 성장하였고, 계면에는$FeSn_2$층만이 약 $1.5\mu\textrm{m}$로 성장하였다.

Keywords

References

  1. Packaging v.1 Eletronic Materials Handbook
  2. J. Electron. Mater. v.23 no.8 U. Ray;I. Artaki. H.M. Gordon;P.T. Vianco
  3. Proc. Of ISTFA'88(ASM) v.53 K.S. Bae;A.F. Sprecher;H. Conrad;D.Y. Jung
  4. IEEE Trans. CPMT-B v.21 no.4 Y. Moriya;Y. Yamade;R. Shinya
  5. J. Electron. Mater. v.23 no.8 E.P. Wood;K.L. Nimmo
  6. 한국재료학회지 v.7 no.4 윤승욱;이병주;이혁모
  7. 한국재료학회지 v.8 no.9 서윤종;이경구;이도재
  8. 한국재료학회지 v.8 no.11 홍순국;주철홍;강정윤;김인배
  9. J. Electron. Mater. v.23 no.8 W. Yang;R.W. Messler, Jr;L.E. Felton
  10. J. Electron. Mater. v.26 no.7 D.R. Flanders;E.G. Jacobs;R.F. Pinizzotto
  11. 반도체 산업 v.5 no.7 반도체 재표 품목별 동향
  12. 대한금속학회지 v.36 no.11 한정남;변수일
  13. J. Electron. Mater. v.21 no.6 Z. May;J.W. Morris
  14. Metals and Materials v.4 no.4 Do-Hyun Kim;Jang-Kyo Kim;Man-Lung Sham;Pyung Hwang
  15. Matals Handbook(9th ed.) v.9
  16. J. Electron. Mater. v.24 no.10 W. Yang;L.E. Felton;R.W. Messler, Jr
  17. Binary Alloy Phase Diagrams(2nd ed.) v.94 T.B. Massalski
  18. J. Electron. Mater. v.23 no.8 M.E. Loomans;S. Vaynman;G. Ghosh;M.E. Fine