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A Multiple Unit Roots Test Based
on Least Squares Estimator

Key-11 Shin!

ABSTRACT

Knowing the number of unit roots is important in the analysis of k-
dimensional multivariate autoregressive process. In this paper we suggest
simple multiple unit roots test statistics based on least squares estimator
for the multivariate AR(1) process in which some eigenvalues are one and
the rest are less than one in magnitude. The empirical distributions are
tabulated for suggested test statistics. We have small Monte-Calro studies
to compare the powers of the test statistics suggested by Johansen(1988)
and in this paper.

Keywords: Autoregressive process; Least squares estimator; Cointegration; Unit
root test

1. INTRODUCTION

Consider k-dimensional multivariate first-order autoregressive AR(1) process
defined by the rule

K~M=Q(Yt—l-”)+nt)t=112"") (11)

where Yo =0 and {n; : t = 1,2,-- -} is a sequence of independent and identically
distributed multivariate normal variates with mean 0 and variance 2. When
some eigenvalues of ® are one, we say that the process is nonstationary. Since
the number of cointegrating vectors is the same as that of the eigenvalues of ® less
than one in magnitude, multiple unit roots test is closely related to the cointegra-
tion problem. See Engle and Granger(1987) and Murray(1994) for cointegration.
Phillips and Durlauf(1986) suggested several statistics for testing Hg : & = I.
Fountis and Dickey(1989) studied nonstationary AR(p) process where only one
eigenvalue is one and the rest are less than one in magnitude. They showed
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that the nonstationary part(unit root part) and the stationary part of the or-
dinary least squares estimators can be separated in the limit. Johansen(1988)
studied multiple unit roots problem using likelihood ratio test statistic. Among
the many fine discussions of these issues are those provided by Hamilton(1994)
and Fuller(1996). In section 2 we generalize the method suggested by Fountis
and Dickey(1989) and suggest simple test statistics for multiple unit roots test.
In secton 3 we tabulate the empirical distributions of test statistics developed in
section 2 and compare the empirical powers of the test statistics in this paper
and suggested by Johansen(1988). We have some concluding remarks in section
4.

2. DERIVATION OF TEST STATISTICS

Consider the k-dimensional multivariate AR(1) model defined in (1.1)
Yi_,u':é()/t——l _“)+nt7 t= 132,"' .
Assume that there exists a real matrix R such that

I, O
0 A

A=R1'0R= : (2.1)

where O is a proper zero matrix and A}, has eigenvalues less than one in
magnitude. Then the transformed process by R~! becomes

Zt"V:A(Zt_l—V)+€t,t:1,2,"‘, (22)

where Z; = R™'Y,,v = R™'yx and ¢, = R 'n;. Note that since A and ® are
similar matrices, the eigenvalues of A and ® are the same. So testing that ® has
r unit roots is the same as testing A has r unit roots.

For a given data set Y; ’s , one can obtain the ordinary least squares estimator
of & and get eigenvalues from that estimator. These eigenvalues are the same as
those of the ordinary least squares estimator of A. See Fountis and Dickey (1989,
p 421).

In this paper we suggest test statistics based on estimated eigenvalues of ®
which are the same as those of A for unit roots test. Since the eigenvalues do not
depend on the matrix R, the test statistics based on eigenvalues do not depend
on the matrix R. Using the eigenvalues for unit roots test, those models (1.1) and
(2.2) can be treated as same. So in the following sections we use the transformed
process by R™! for brevity.
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2.1. Testing for A =1I

Consider the k-dimensional multivariate AR(1) process with mean zero de-
fined by

Zy=AZ; 1 +e, t=1,2,---, (23)

where ¢, s are indepenent and identically distributed with mean zero and variance
.

Assume that 1 > a1 2 a3 > -+ > ap > —1 whereo; , i = 1, --- , k are the
eigenvalues of A and we want to test Hy : A = I.

The ordinary least squares estimator of A is defined by Ay = Y15 212,
s 212, ] ~!. Phillips and Durlauf (1986) studied Ao, and obtained the
limiting distribution of n(Ays — Ix). The result is stated in Theorem 2.1.

Theorem 2.1. (Phillips and Durlauf (1986)) When characteristic equation for
k -dimensional multivariate AR(1) process has all roots one, the limiting distri-
bution of n(As — Ix) is as follow.

(Ags — I) =& 312 [ /0 Waw ) + Ik] [ /0 1 W(t)W(t)’dt]-l 5172 (9.4)

Here ” =% 7 denotes convergence in distribution and W(t) is a Wiener process.

Note that when all eigenvalues of A are one then determinant of A must be
one and the reverse is true with the assumption after (2.3). Also trace of A with
all roots one must be k and the reverse is true.

So we suggest new test statistics, n(det(Aqs) — 1) and n(trace(Aqys) — k), for
testing Hy : A = I .vs. H,4 : some eigenvalues are less than one.

Theorem 2.2. The limiting distribution of n(det(Ays) — 1) is as follow.

n(det(Ays) — 1) =L tr( [/01 W (t)dW (t)' + Ik] [/01 W(t)W(t)’dt} _1) (2.5)

Proof: Using diagonal expansion of determinant, see Searl(1982), det(Aqys) =
det(Ags — Ix + It) = 1 + tri(Aas — Ix) + tro(Aes — Ix) + -+ + tre(Aos — Ir)-
Here tr;(B) is the sum of principal minors of order i of det(B) . Note that
tr1(Aos — Ix) = trace(Aqs — Ix) and tri(Aos — Ix) = det(Ags — Ix). Now
using Theorem 2.1 we have tri(Ags — Ix) = Op(n~"). So n(det(Ays) — 1) =
ntrace(Aqs — Ix) + Op(n71). O
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Theorem 2.2 shows that suggested two statistics share the common limiting
distribution. This approach can be extended to the mean estimated case.

Consider AR(1) process with nonzero mean vector v defined in (2.2). Let
Ay ots be the ordinary least squares estimator of A for the model (2.2). Then
the limiting distribution of n(A, .5 — Ix) for AR(1) model with mean vector v is
found in Phillips and Durlauf (1986). Using this result we have Theorem 2.3.

Theorem 2.3. With the assumptions defined after (2.1), the limiting distribu-
tion of n(det(A, o15) — 1) is as follow.

n(det(Au,ols) - 1) _)L

tr ([/Oldw(t)w(t)’ + I ~ W(l)/o1 W(t)'dt] [/01 W ()W (t)'dt — /01 W(t)dt/ol W(t)’dt]ﬂ)
(2.6)

The proof of this theorem is similar to that of Theorem 2.2. Again n(det(A, o)
—1) and n(trace(A, os) — k) have the same limiting distribution.

2.2. Testing unit roots

Consider the k-dimensional multivariate AR(1) model defined in (2.3) again.
This time we assume that A has r unit roots and the rest are less than one in
magnitude. So we want to test Hy : A has r unit roots , r < k. Then one can use
the proposed statistics, n(det(Aqs) — 1) and n(trace(Ays) — r). First consider
Ay, least squares estimator of A.

4 A i ” -
Is11 olsl2 Z ' Z /
AOIS 0 = ZtZt—-l Zt_l Zt—].
| Aots21 Aots22 — =

[ n ' n '
Zt=2 thth—l Zt=2 thZzt-l

n ! n !
L Ytma Dol g Yoimg ZaeZiy

_ -1
E?:z th—lzit——l Z?:z th—lzét—l
| e Za-12Z1 . 2i—p Za-12y

where Z}; is a r-dimensional vector corresponding to nonstationary process.
Let D, = diag(n,--- ,n,nY/2 ... nl/2). Then it is known that (Agis —
A)Dn = Z?:l etZ,{_lD;l(D;l Z?:l Zt_1Z£_1D,TI)"1 = Op(l) where e; = Z; —
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AZ;_i. With convergence rates in Fountis and Dickey(1989) we have
-1

n n
n(Agsi1 — 1) = Y _enZi, 1 /n {Z Zi-1Z1-1/n®| +o0p(1) (2.7)
t=1 t=1

where ey = Zv¢ — Z14-1.

So existence of the stationary part does not affect the limiting distribution
of estimated eigenvalues in the nonstationary part. Hence by checking how the
determinant or trace of A, corresponding to the largest r eigenvalues of Ay
are close to one or r, one can test for the number of unit roots. Note that
Fountis and Dickey (1989) studied the case of =1 which is a special case of these
suggested statistics. This method can be applied to the mean estimated case.

Consider AR(1) process with nonzero mean vector v defined in (2.2). Again
we assume that A has r unit roots and the rest are less than one in magnitude and
we want to test Hy : A has r unit roots , r < k. Let A4, ,; be the ordinary least
squares estimator of A in the model (2.2) and A, 411 be the upper left corner
matrix of A, o5 corresponding to the largest r eigenvalues. Then using the similar
arguments developed above, the limiting distribution of n(det(A4, o511) — r) can
be obtained by Theorem 2.3.

3. SIMULATION STUDIES

In this section we tabulate the empirical distributions of suggested test statis-
tics. With the 5 % critical values, we compare the empirical powers of three test
statistics; n(det(®y,ois) — 1), n(trace(®, o) — k) and statistic by Johansen.

3.1. Percentiles

For simplicity we do not tabulate the percentiles for zero mean case because
a time series with zero mean is seldom encountered in practice. We just consider
k-dimensional AR(1) process with mean vector u and the variance matrix €.
So the process used for simulation is Y; — 4 = ®(Y;—; — ¢) + . To construct
the percentiles, we use Yy = 0,z = 0,® = I, and generate n;’s as independent
standard normal random variates with variance I;. The RANNOR function in
FORTRAN is used to generate n;’s. For a given sample size n, 50, 100, 250, we
generate 50,000 replications of each sample size n and compute the test statistics.
As one can see, the percentiles based on trace and determinant of ®, ;s become
closer as n increases. These results confirm Theorem 2.3. The percentiles are
reported in Table 3.1 to Table 3.3.
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Table 3.1: Percentiles of n(det(®, ) — 1) and n(trace(®,05) — k) for two unit
roots

Length of data percentiles

0.01 0.025 0.05 0.1 0.25
n=>50 | trace | -32.05 -27.35 -25.59 -22.38 -12.83
det | -29.10 -26.03 -23.57 -20.81 -12.28
n=100 | trace | -34.21 -29.37 -26.64 -23.00 -13.04
det | -32.50 -28.70 -25.56 -22.21 -12.77
n=250 | trace | -34.47 -30.99 -27.21 -23.58 -13.24
det | -32.12 -30.30 -26.81 -23.24 -13.13

Table 3.2: Percentiles of n(det(®,0is) — 1) and n(trace(®, o) — k) for three unit
roots

Length of data percentiles

0.01  0.025 0.05 0.1 0.25
n=>50 | trace | -47.36 -43.85 -40.02 -36.29 -24.48
det | -37.47 -34.89 -32.65 -30.12 -21.52
n=100 | trace | -51.26 -46.14 -42.57 -38.39 -25.46
det | -45.49 -41.63 -3835 -34.94 -23.86
n=250 | trace | -53.85 -48.10 -44.04 -39.48 -25.88
det | -51.21 -46.34 -42.22 -38.03 -25.22

Table 3.3: Percentiles of n(det(®,015) — 1) and n(trace(®,,05) — k) for four unit
roots

Length of data percentiles

0.01  0.025 0.05 0.1 0.25
n=>50 | trace | -63.05 -58.29 -54.54 -50.48 -37.11
det -42.59 -40.54 -38.13 -36.72 -29.30
n=100 | trace | -69.33 -63.08 -59.61 -54.83 -39.97
det -56.29 -52.81 -49.83 -46.44 -35.28
n=250 | trace | -73.91 -68.14 -63.30 -58.09 -41.87
det -67.90 -62.92 -58.74 -54.23 -39.79




A Multiple Unit Roots Test 51

3.2. Empirical powers

In this section we study the empirical powers of the test statistics suggested in
this paper and by Johansen(1988). Here we only consider Hg : A = I . Critical
values for @ = 0.05 level tests are given in Table 3.1 to Table 3.3. For the power
of statistic suggested by Johansen, we use 18.59 for n=50 and 18.42 for n=100
as critical values. We consider two cases, (1) ® = A, i ~ N(0,I3), (2) ® = A
11
1
generate data with sample size n=50,100 and o, aq = 0.8, 0.85, 0.9, 0.95 and 1.
From the results of Table 3.4 to Table 3.7 we observe the followings.

, e ~ N(0,9Q) , where A = diag(a;,ap) and Q = . For each case, we

1. The power of n(trace(®, q,) — 2) is better than that of n(det(®,015) — 1)
when o1 and a; are less than one.

2. When oy =1, a3 < 1, the power of n(trace(®, o) — 2) is almost the same
as that of n(det(®,,0s) — 1).

3. The powers of test statistics developed in this paper become lower when
correlation exists.

4. When Var(n;)= I, the power of n(trace(®, ;) — 2) is better than that of
Johansen’s method.

5. When Var(e; )= Q and the difference of @; and aj is large, actually depend-
ing on the difference and the magnitude of «;’s, the power of Johansen’s
method is better than that of n(trace(®, o) — 2).

Note that for simulation we use diagonal matrix for A since the effect of non-
identity variance marix of errors on the multiple unit roots test is equivalent to
that of non-diagonal A matrix. To see the effect of Corr( m1¢ , 72¢ )= p, correlation
of errors, we calculate the powers of test statistics for ( a; , az ) = (0.9 ,0.85),
n=100 with various correlations. Result is reported in Table 3.8.
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Table 3.4: Empirical power of size 0.05 with n=50, Var(n;) = I

ay
0.8 0.85 0.9 0.95 1.0
0.8 | trace | 66.08 5553 44.38 34.97 24.04
det | 59.45 49.50 39.61 31.88 23.26
Jo 37.09 29.15 2224 17.57 14.37
as | 0.85 | trace 4438 3392 2533 1749
det 39.61 29.72 22.79 16.69
Jo 22.24 16.41 13.06 10.53
0.9 | trace 24.89 18.06 11.81
det 2193 16.15 11.07
Jo 12.48 9.52 7.66
0.95 | trace 12.35 7.90
det 11.15 7.59
Jo 7.39 6.05
1.0 | trace 5.12
det 5.01
Jo 4.83

Table 3.5: Empirical power of size 0.05 with n=50, Var(n;)= Q

(631
0.8 0.85 0.9 0.95 1.0
0.8 | trace | 66.29 54.54 41.16 27.80 16.99
det | 59.92 4850 36.66 25.35 16.79
Jo 37.33 30.3¢4 27.88 30.12 35.29
a | 0.85 | trace 43.94 3273 21.82 11.68
det 38.63 28.77 19.21 11.36
Jo 2195 17.82 18.39 21.77
0.9 | trace 25.06 16.82 8.61
det 21.94 15.04 8.35
Jo 12.24 1077 12.24
0.95 | trace 12.38 6.68
det 11.26 6.45
Jo 7.31 6.86
1.0 | trace 4.95
det 5.02
Jo 5.10
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Table 3.6: Empirical power of size 0.05 with n=100, Var(n;)= I

(03]
0.8 0.85 0.9 0.95 1.0
0.8 | trace | 99.72 98.23 93.91 83.64 67.08
det 99.60 97.67 92.75 82.38 67.68
Jo 94.99 86.32 73.19 57.28 43.42
a | 0.85 | trace 93.59 82.56 64.99 44.21
det 92.06 80.04 62.73 44.12
Jo 72.71 54.32 3735 26.10
0.9 | trace 64.01 43.08 24.41
det 60.83 40.65 23.88
Jo 35.98 21.88 14.07
0.95 | trace 24.07 11.32
det 22.57 11.14
Jo 11.90 7.47
1.0 | trace 4.88
det 4.91
Jo 4.70

Table 3.7: Empirical power of size 0.05 with n=100, Var(e; )= Q

Q1
0.8 0.85 0.9 0.95 1.0
0.8 | trace | 99.67 98.22 9222 75.88 5347
det | 99.52 97.66 90.74 73.98 53.74
Jo 94.68 88.26 82.64 83.07 8848
az | 0.85 | trace 93.556 81.16 57.66 32.02
det 9196 7861 55.39 31.95
Jo 72.56 58.15 55.65 65.74
0.9 | trace 63.78 39.77 16.58
det 60.71 37.65 16.45
Jo 3544 26.59 35.02
0.95 | trace 24.38 8.39
det 22.79 8.20
Jo 12.00 12.42
1.0 | trace 4.85
det 4.86
Jo 4.89
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Table 3.8: Empirical power of size 0.05 with various p and (o , a2) = (0.9, 0.85)

P 0.0 0.45 0.71 0.83 0.89 0.93 0.95 0.96
Trace | 82.46 82.38 81.27 79.71 7782 7570 73.73 71.18
Det | 80.00 79.94 7865 77.08 75.21 7296 70.90 68.20
Jo 54.36 55.84 58.35 6294 6873 75.54 81.80 87.88

Table 3.8 shows that powers of suggested test statistics in this paper decrease as
correlation increases but the result of Johansen’s method is reversed. Notice that
the R matrix defined in (2.1) is closely related to the correlation of errors and so
the form of R matrix affects the powers of test statistics.

4. CONCLUDING REMARKS

Many researches are devoted to finding the number of unit roots in multivari-
ate autoregressive model. In this paper we generalize the method developed by
Fountis and Dickey (1989). So when the number of unit roots in a model is one,
the suggested methods become the same as that developed by Fountis and Dickey
(1989). The suggested test statistics can be easily calculated even though some
of roots are complex values. In simulation study we use the absolute value of
roots. Comparing two test statistics, test statistic based on trace of least squares
estimator is better than that based on determinant. When the difference between
«;’s or the correlation of errors are not large, the test statistic based on the trace
of estimator of ® gives better power properties than that of Johansen(1988).
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