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On Efficient Estimation of the Extreme Value Index
with Good Finite-Sample Performance

Seokhoon Yun!

ABSTRACT

Falk (1994) showed that the asymptotic efficiency of the Pickands estima-
tor of the extreme value index # can considerably be improved by a simple
convex combination. In this paper we propose an alternative estimator of 3
which is as asymptotically efficient as the optimal convex combination of the
Pickands estimators but has a better finite-sample performance. We prove
consistency and asymptotic normality of the proposed estimator. Monte
Carlo simulations are conducted to compare the finite-sample performances
of the proposed estimator and the optimal convex combination estimator.

Keywords: Extreme value index; Pickands estimator; §-neighborhood; general-
ized Pareto distribution; consistency; asymptotic normality

1. INTRODUCTION

Let Xi,...,X, be an i.i.d. sample from a distribution function F. Suppose
that F' belongs to the domain of attraction of an extreme value distribution G
for some 5 € R (in short, F € D(Gg)), where

Gp(z) := exp{—(1 + Bz)"YP}, 1+ Bz > 0,

that is, for some constants a,, > 0 and b, € R,
a; (max{Xy, ..., Xn} — by) % G4 as n = 0. (1.1)

By % we denote convergence in distribution. The case § = 0 is always interpreted
as the limit § — 0 throughout the paper, i.e., Go(z) = exp(—e~7), z € R.

The S is called the extreme value index and estimation of the parameter 3
based on the sample X7, ..., X;, has been extensively studied in the literature (see,
e.g., Pickands (1975), Hill (1975), Smith (1987), Dekkers and de Haan (1989),
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Falk (1994), and Drees (1995)). If one knows that 3 > 0, one can use the well-
known Hill estimator (see Hill (1975)). Otherwise, one can use the Pickands
estimator (see Pickands (1975)) defined by

3 1 Xn- +1n — Xn—2m+1:n
Bn{m) := lo ( n-m ,
n( ) log 2 & Xn—2m+1:n — Xn—dm+in

where 1 < m < n/4 and X, < --- < X,., denote the order statistics of
Xy, ..., X,. Pickands proved weak consistency of this estimator for any g € R
and any sequence of integers m = m(n) — oo such that m/n — 0 as n — oo,
and Dekkers and de Haan (1989) proved strong consistency for any sequence
m = m(n) such that m/n — 0 and m/loglogn — oo as n — co. The Pickands
estimator is moreover invariant under the choice of a, and b, used in (1.1).

Asymptotic normality of the Pickands estimator also holds under additional
conditions on F (see, e.g., Dekkers and de Haan (1989) and Falk (1994)). However
it has a rather poor asymptotic efficiency. Falk (1994) showed that the asymptotic
variance of the Pickands estimator can considerably be reduced by a simple convex
combination as

3 (m,p) = p- Bullm/2]) + (1~ p) - fa(m)
_ 1 lo {( Xn—[m/2]+1:n - Xn—2[m/2]+1:n >p
log 2 Xn—2[m/2]+1:n — An—4[m/2)+1lin

% ( Xn—m+1:n — An—2m+Llin )1—1)
Xn—2m+1:n - An—4m+lin ’
where p € [0,1], 2 < m < n/4, and [z] denotes the integer part of x € R. Specifi-

cally, assuming that F is in a é-neighborhood of a generalized Pareto distribution
(GPD) Hp (see Section 2 for the definition), where

Hg(z) :=1—-(1+pz) Y8, 2 >0, 1+ Bz >0,

which is a stronger assumption than F' € D(Gp), he showed that, for any sequence
m = m(n) — oo such that (m/n)’/m — 0 as n — oo,

V(BE (m,p) - B) 5 N(0,03 - (5 (9))?) as n = oo, (1.2)

o 142721 ( B )2
g5 =
s 2log?2 \1-2-8

where
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and

-8 -B
P 2= 14p2 (34 227 ) _ 477
(vg ) :=1+p (3+2_2ﬂ+2) p(2+2__2ﬂ+2 .
Interpret 03 = limg_,o 0[2, = 3/(4log*2). Note here that a?, is the asymptotic

variance of v/m(8,(m) — B). Since ﬁT(LF) (m,0) = Bn(m), ﬁ,(zF)(m,p) is obviously a
great improvement on G, (m) if p is chosen appropriately.
In this paper we consider a different mixture of the form

Bn(m,a) =
L { &(Xn—fm/2+1n ~ Xn-sfm/gt1m) + (Xn-mi1in = Xn—2mi1:) }, (1.3)
log 2 )

a(Xn_2im/2l+1:n = Xn-amj2+1:n) + (Xn-2m+1n — Xn—tm+im

where a > 0 and 2 < m < n/4, which uses the same order statistics as the
Falk estimator B,(lF)(m, p). Since Bn(m, 0) = Bn(m), ﬁn(m, a) is also an extension
of the Pickands estimator. We prove weak and strong consistency of 3, (m,a)
for any 8 € R under the sole condition F € D(Gg). Assuming that F is in a
é-neighborhood of a GPD Hy, we also prove that v/m(Bn(m,a) — 3) is asymp-
totically normal for any sequence m = m(n) — oo such that (m/n)’y/m — 0
as n — oo. It turns out that the estimator f3,(m,a) has the same asymptotic
performance as the estimator ,3,(LF) (m,p) if a and p are chosen in optimal ways,
respectively. Moreover, the estimator ,Bn(m, a) with optimal a turns out to have
a better finite-sample performance than the estimator ,B,(lF) (m,p) with optimal p.

The rest of the paper is organized as follows. In Section 2 we establish
(weak and strong) consistency and asymptotic normality of 3,(m,a). Further
we determine the optimal a*(3) which minimizes the asymptotic variance of
vm(Bp(m,a) — B) and investigate the asymptotic behavior of the data-driven
optimal estimator f3,(m,a*(B,)), where B, is a weakly consistent estimator of
8. In Section 3 we compare the finite-sample performance of 8,(m, a*(8,)) with
that of B,(lF)(m,p* (8n)) by various Monte Carlo simulations, where p*(8) is the
optimal p minimizing the asymptotic variance of 1/m( A,(,F) (m,p) — B). In Section
4 we briefly mention the possible extension of 3, (m, a) to a higher mixture form.
All proofs are collected in the Appendix.

2. CONSISTENCY AND ASYMPTOTIC NORMALITY

First, we establish weak consistency of Bn(m,a) under the sole condition
F € D(Gp). By 2 we denote convergence in probability.
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Theorem 2.1. (Weak consistency). Suppose that F € D(Gg) for some 8 € R.
Then, for a > 0 and any sequence m = m(n) — oo such that m/n — 0 as
n — 00,

~

Bn(m,a) B B as n — co.

If the sequence m = m(n) increases suitably rapidly, then strong consistency
of B,(m,a) also holds.

Theorem 2.2. (Strong consistency). Suppose that F' € D(Gg) for some 8 €
R. Then, for a > 0 and any sequence m = m(n) such that m/n — 0 and
m/loglogn — oo as n — oo,

Br(m,a) = B a.s. as n — oo.

For asymptotic normality of 3,(m, a), we assume a 6-neighborhood of a GPD
as Falk (1994) did in his paper. For § > 0, F is said to be in a J-neighborhood
of a GPD Hpg (in short, F' € Q(J; Hg)) if zr = zp, and F has a density f on
[0, zF) for some zy < zF such that

f(@) = ha(z)(1 + O((1 - Hp(2))")), 2 € [z0,zF),

where hg denotes the density of Hg and zp := sup{z : F(z) < 1}, the right
endpoint of F. The connection of d-neighborhoods of GPD’s with rates of con-
vergence of extremes is well described in Falk, Hiisler and Reiss (1994). We now
establish asymptotic normality of Bn(m, a) in terms of variational distance, which
then gives the rate of convergence to the normal distribution.

Lemma 2.1. Suppose that F' € Q(8; Hg) for some 6 > 0 and B € R. Then, for
a>0,me {2 ..,n/4} andn € {8,9,...},

up |P{(V7(fn(m, o) ~ §) € BY = Plogup(a)Z + Op(1/v/m) € BY|

= O((m/n)’y/m + m/n +1//m),
where
a? a-27P 4.2-8
Vila) =1+ G T Gz (2 Ty 2) ’

7 is a standard normal random variable and B denotes the Borel o-field in R.
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The following result is an immediate consequence of Lemma 2.1.

Theorem 2.3. (Asymptotic normality). Suppose that F € Q(4; Hg) for some
d >0 and B € R. Then, for a > 0 and any sequence m = m(n) = oo such that
(m/n)0/m — 0 as n — oo,

VI (Bn(m,a) — B) 4 N(O,U% . u?,(a)) as n — oo. (2.1)

Note here that (2.1) includes the asymptotic normality of the Pickands es-
timator B,(m) = B,(m,0). From (1.2), (VéF)(p))z is the asymptotic relative
efficiency (ARE) of f3,(m) with respect to ﬂA,(lF)(m,p), which is defined by the

ratio of the asymptotic variances of Jr_ﬁ(ﬁgp)(m,p) — B) and /m(B,(m) — B).
Also, from (2.1), v3(a) is the ARE of B, (m) with respect to B, (m, a).

Now the optimal choice of p minimizing (VE,F) (p))? is

(2728 +2) +2.27F
3(2-28 +2) +4-2-8’

p*(B) =

in which case (ugF)(p))2 becomes

.98
6O =1-50) (1+ s )

Similarly, the optimal choice of ¢ minimizing Vg(a) is

‘() = 278228 +2.27F 12)
CNE T A1)

in which case v3(a) becomes

(2728 +2.278 4 2)2
2728 +2)(3-2"264+4-2-8 +6)

vi(a*(B)) =1~ (

It is interesting to observe that (1/[(31?)(;1)*(,3)))2 = v3(a*(B)) < 1 for all 8 €
R. In fact, mingex u?,(a*(ﬁ)) = 0.34 (approximately) and supgcg yg(a*(ﬂ)) =
2/3. These imply that B,(lp) (m,p*(B)) and ,Bn(m, a*(B)) are obviously superior to
the Pickands estimator G, (m) and that they have exactly the same asymptotic
performance.

However the optimal p and optimal ¢ depend on the unknown parameter
[ which is to be estimated. This suggests utilizing an adaptive estimator. Falk
(1994) gave the following result which says that the estimator B,(,F) (m, p*(Bn)) has
the same asymptotic performance as B,(lF)(m,p*(ﬁ)) if B, is a weakly consistent
estimator of 3.



62 Seokhoon Yun

Theorem 2.4. Suppose that F' € Q(0; Hg) for some § > 0 and € R. Then,
for any sequence m = m(n) — oo such that (m/n)’/m — 0 as n — oo,

V(B (m,p* (Ba) — B) S N(0,05 - (v5" (0*(8))?) as n — oo
if Bn is a weakly consistent estimator of 3.

We now show that the estimator 3,(m, a* (8y)) also has the same asymptotic
performance as  fp(m,a*(8)) and thus that B,(m,a*(3,)) and

A,(lF)(m, p* (Bn)) have equal asymptotic performance if 3, is a weakly consistent

estimator of 8. For this we need the following lemma.

Lemma 2.2. Suppose that F € Q(d; Hg) for some § > 0 and 8 € R. Then, for
any sequence m = m(n) — oo such that (m/n)’/m = 0 as n — oo,

V(B (m,a*(Ba)) = Ba(m,a*(8))) = op(1) as n — oo
if By is a weakly consistent estimator of s.
The following result is an easy consequence of Lemma 2.2 and (2.1).

Theorem 2.5. Suppose that F' € Q(6; Hg) for some § > 0 and B € R. Then,
for any sequence m = m(n) — oo such that (m/n)’/m — 0 as n = oo,

Vm(Br(m, a*(Ba)) — B) % N(0,03 - v3(a*(8))) as n — oo

if By is a weakly consistent estimator of 3.

3. FINITE-SAMPLE PERFORMANCE

In this section the finite-sample performance of the new estimator
Bn(m,a*(B,)) is compared with that of the Falk estimator B,(LF) (m,p*(8,)) by
various Monte Carlo simulations.

Falk (1994) proposed G, = B (m,p*(0)) = B (m,5/13) as an initial es-
timator. This is quite reasonable since the parameter 3 = 0 is crucial as it
is some kind of change point: if 8 < 0, then the right endpoint zg of F is
finite, while in case 8 > 0 zp is infinite. By the same reason we propose
Bn = Bn(m,a*(0)) = Bp(m,5/8) as an initial estimator when we deal with
Br (m, a*(B,)). As a consequence, we compare B,(f) (m, p*) with B, (m, a*), where
p* =9 (B (m,5/13)) and &* = a*(Ba(m, 5/8)).
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The study is based on k = 1000 Monte Carlo simulations. In each simulation
t =1,...,k, we generated n = 50,100,200,400 replicates X1, ...X,, of a (pseudo-
) random variable X with different distribution function F in each case; we
then computed the three estimators f,(m), B&F) (m,p*), and Bn(m, a*) of the
pertaining values of 8 with m = 8,10, 14, 16, and stored by

By :=|Bu(m) = B, C¢:=18)(m,5*) = Bl, Dy :=|Ba(m,a") - B

their corresponding absolute errors. By By < -+ < By, Crik < - < Chg, and
Dy < -+ < Dy, we denote the ordered values of (B;)f_;, (Cy)¥_,, and (Dy)E_,,
respectively. Figures 1~4 display the corresponding sample quantile functions

(t/(k + 1), Bp), (t/(k+1),Cex), /(k+1),Dx), t=1,..,k,

which now visualize the concentration of the three estimators around 8.

In Figure 3.1, F' is the triangular distribution, that is, X is the sum of two
independent U4(0, 1)-distributed random variables (3 = —0.5 and F € Q(6; H_¢.5)
for any § > 0); in Figure 3.2, F is the standard Gumbel distribution, i.e., F = Gy
(8 =0and F € Q(1; Hyp)); in Figure 3.3, F is the Cauchy distribution (8 = 1 and
F € Q(2;H;)). In Figure 3.4, F is the standard normal distribution, in which
case 3 = 0 and F does not belong to any Q(4d; Hy), but it can be seen that the
asymptotic normality in Theorem 2.5 is true for any sequence m = m(n) — oo
such that \/mlog?(m+1)/logn — 0 as n — oo (see Example 2.33 of Falk (1986)).

The figures clearly show that the new estimator Bn (m,a*) has the best finite-
sample performance. The improvement by using B,(m,a*) against ﬂhy(lp)(m,ﬁ*)
is good particularly when 8 < 0. We have done extensive simulations covering
a wide range of distributions for F' whose plots are omitted here. According
to these, gamma and logistic distributions for instance have shown very similar
performance to that of Figure 3.2, whereas the performances of F = G_; and
F = G, are similar to those of Figure 3.1 and Figure 3.3, respectively.

4. CONCLUDING REMARKS

Recently, Drees (1995) considered a higher linear combination of the Pickands
estimators like

k k
Zpiﬁn([m/zi_l])a D > 0» sz = 17
=1 =1

and showed that the combination estimator with optimal p; has a better asymp-
totic performance than the Falk estimator ﬁ,(,F)(m, P*(Brn)). This is not surprising
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since the higher linear combination estimator uses more number of observations
than the Falk estimator.
Likewise, one may extend (1.3) to a higher mixture of the form

1 { Zf_1 ai(Xn—[m/T'—l]-{-l:n - n—2[m/2"—1]+1:n) } '

log
log 2 Ez la'l(Xn——Z[m/2i‘1]+1:n - n—4[m/2i"1]+1:n)

where a; > 0 with a; = 1. However, it is clear that the theoretical details will be
much more complicated.

APPENDIX: PROOFS

We need the following well-known result (see, e.g., de Haan (1984)) to prove
Theorem 2.1.

Lemma A.1. For some € R, F € D(Gp) if and only if

lim F 11 —-tz)-F1(1-1¢) _:c_ﬁ—
1o F-1(1—ty) - F-1(1-t) yFf-1

locally uniformly

for ¢,y > 0 with y # 1, where F~1! denotes the quantile function of F.

Proof of Theorem 2.1
Writing Vi,(m) := Xn—m+1:n — Xn—2m+1:n, We have

: _ 1 a(Va(2[m/2)) [ Vi (m))2P /2D + 1
’ "(m’a)’1g2l°g( (2l 20)] Vo (m) + 2Pl )

which converges in probability to § as n — oo if we show that
Vi(m)/Va(2[m/2])) & 1 as n — oco. For this it is enough to show that, for
m = 2k + 1 with k = k(n) — oo and k/n — 0 as n — oo,

Vi (m) /Va(2[m/2]) = Vo (2k + 1)/ Vy (2k) B 1 as n — oo.

Let &1, &, ... be 1.1.d. standard exponential random variables and let §1., <--- <
£n-n be the order statistics of 1, ...,&n. Then (Xn—ji1m)joq = L (F- Hi- e'E"—J+1 D)
and further there exist i.i.d. standard exponential random variables {1, ,fn such
that (€n—js1m — ﬁn_j;n)j )= (§J /j)] _1, where £p., := 0, which is usually referred

to as Rényi’s representation. Thus k — oo implies that &, _2k+1:n — {n—2k:n Ko
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and &q—gk+1:n — En—dk~1:n 2 0 as n = 00. Also note that k/n — 0 implies that
e én-2k+1m — 0 a.s. as n — oo. Therefore,

Va(k+1) ¢ F7 11— e f-2n) — F7l(] ~ g=br-ar-1:n)
Va(2k) - F-1(1 - e“fn—2k+1:n) - F-1(1 - e“fn—4k+1;n)
F~Y1 — e~én-2k41m . eln=2k+in~En-2kin) — P-1(] — e—En—2k+1m)
F~1(1 — e=én-2k41in) — F-1(1 — e~én-2k+1:n .eEn-2k+1:n—€n—4k+1:n)

11 - e—En-2k+1:n) — F71(1 — e~én-2b41m . eﬁn—2k+1:n—€n-4k—x:u)
11— e_§n~—2k+1:n) — F~1(1 ~ e~ ¢n-2k+1in . efn—2k+1:n—€n—4k+1:n)
2 1-1 1= 278

1-2-8"1-2-F

+

F_
F._.

=lasn—

by Lemma A.l since {n_ok+1:n — {n—ak+1n RN log2 as n — oo (see Corollary 2.1
of Dekkers and de Haan (1989)). This completes the proof. O

Proof of Theorem 2.2

Let &;1,&2,... be ii.d. standard exponential random variables and let £&;., <
-+» < &n.n be the order statistics of ¢, ..., &,. Then the conditions on the sequence
m = m(n) imply that &,_m41.n + log(m/n) — 0 a.s. as n — oo by Corollary 4
of Wellner (1978). Thus, for m = 2k + 1 with k& = k(n) = oo, k/n — 0
and k/loglogn — oo as n — oo, we have &, oki1:n — En—2kn — 0 a.s. and

€n—ok+1:n — En—ak+1:n — log2 a.s. as n — oo. The rest of the proof is similar to
that of Theorem 2.1. (I

The following lemma, which is a reformulation of Theorem 2.2.4 of Falk,
Hiisler and Reiss (1994) (see also Corollary 5.5.5 of Reiss (1989)), is crucial for
providing a rate of convergence in the asymptotic normality of Bn(m, a).

Lemma A.2. Suppose that F € Q(6;Hg) for some § > 0 and B € R. Then
there exist constants ap, > 0 and b, € R such that, for any k € {1,...,n} and
n € {1,2,...},

Sup 1P {((Xn—j+1=n — bn)/an)j=1 € B} - P{(((g&)_ﬂ - 1)/ﬂ)1=1 © BH
= O((k/n)*VEk + k/n),

where £1,&9, ... are i.i.d. standard exponential random variables and B* denotes
the Borel o-field in R*. Here the constants a,, and by, coincide with those of (1.1).
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Proof of Lemma 2.1

By Lemma A.2, there exist a, > 0 and b,, € R such that, for m € {2,...,n/4}
and n € {8,9,...},

P {((Xns41n — bu)/an)iT € B} - P{(((ifi) T-1)/6) < 8)|

= O((m/n)*v/m + m/n), (A.1)

sup
B€B4m

where £1, &2, ... are i.i.d. standard exponential random variables. Thus, if we put

A(l) o a'(Xn—[m/2}+1:n - n—2[m/2]+1:n) + (Xn—m+1:'n, - X'n—2m+1:n)
G’(Xn—Z[m/2]+1:n - n—4[m/2]+1:n) + (Xn—2m+1:n - Xn—4m+1:n)

_25,

then within the error bound O((m/n)®y/m + m/n) in variational distance AP
behaves like

4o = ol "‘”f)ﬂ (E?L’a"”s,>~ﬂ}+{2:'ilez>- (I ET)
" (M )8 — (T )Py + (DI &) P - (i &) F)
o{(1+ [m/2] " S0P )P — (24 [m/2]~ 2?5’;” m) ﬂ}
+H{m/m/2) + [m/24 ! S5 1)

—(2m/[m/2] + [m/2] "t 22 m) =} o
{2+ [m/2 L T )-8 — (44 [m/2)7 T )8y
+{@m/[m/2] + [m/2)" T m) P

—(d4m/[m/2) + [m/2) 7 i )~}

where n; = &; — 1,1 = 1,2,.... Note here that

BeB

k
sup P{% Y me B} - NO)®B)| =00/VE), ke L2}, (A2)
i=1

where N(0, 1) stands for the standard normal distribution. Thus, using the simple
fact that [m/2)1/2 = (m/2)~1/2 + O(m~3/2), [m/2]~! = (m/2)"! +O(m~?), and
m/[m/2] = 2+ O(m™!), it can be seen that within the error bound O(1/4/m) in
variational distance A,(f) again behaves like
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[« {(I‘L\/‘/*‘OP( "3/2))% )
~(2+ L 4 op(m—3/2))"’ )
+{(2+ 2 + 0rmh) ™
o (14 2B 0pm ) ) |
Ay = _9
/ a{(2 + Z ;72 + Op(m_3/2)> -p \
—-(4+ éxiﬁz\/nt__/{_w_a _*_Op(m—a/z))*ﬁ}
+{(4+ 22458 4 0p(m))
—(8 + LtZat :L/___;ﬁﬁzzg + Op(m‘l)) '5} )
).
+{2 ﬁ( £1+_Z/22_) _4-b ( “52’33—"’:1/ 342223)} +0P(m_1) ,
{27 (1-pigs) 401 - p2pgn) ]
{4 ﬁ( ﬂéﬁ;—zl;rtl_/‘/l&) _8—ﬂ(1_ﬁZ +Z +\:n§/22+2z )}

+O0p(m™1)

3 da(~-2Zy + Z2) + 21‘ﬁ(a - 1021+ 22 - \/EZ;;)
+47P(Zy + Z2 + V223 — 224)

22-8(1 — 2-8)(a + 2-8)v2m

where 71, Z3, Z3, Z4 are independent standard normal random variables and the
second equality follows from the Taylor expansion (1 + z)™% = 1 — Bz + O(z?)
as z — 0. Using the Taylor expansion log(1 + z) = z + O(z?) as ¢ — 0, we
therefore in all obtain that within the error bound O((m/n)°v/m+m/n+1//m)
in variational distance

) +O0p(l/m),  (A3)

(1

Vi(Ba(m,a) - B) = 2 1og (1+ )
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behaves like

vm AR
log 2 log (1 ) )

(3)
— L (T + 0p((A9))
Jm

= 3 longsf’) +O0p(1/v/m)

(2781 - 1)(a+2F Nz
B

+{(2 A1+ Da+278-1(27F1 - 1)} 2,

~278=12(qg -1 —27F"NYZ5 — 27%-17Z, )
N (1—2"5)(a+2P)v2log2 + Op(1/Vm)

since A is of order Op(1/4/m) from (A.3). The assertion now follows from
elementary computations. [J

Proof of Lemma 2.2
Put g(z) :=logz/log?2 and

a’ (ﬂ)(Xn—[m/2]+l:n - n——2[m/2]+1:n) + (Xn—m+1:n - Xn-—2m+1:n)

Ay = .
(6) a* (ﬂ)(Xn—2[m/2]+1:n - Xn—4[m/2]+1:n) + (Xn—2m+1:n - Xn—4m+1:n)

Then, since by the Taylor expansion of g
ﬁn(ma a* (5’!1,)) - Bn(ma a* (:B))
= g(An(Bn)) - g(An(ﬁ))
= (Aa(8)(AnBr) - () + L) 3y )+

_ An(,an) - An(ﬂ) 1 _ A"(B") _ A"('B) + ...
log 2 An(B) 2(An(B))?

and since by (2.1) A,(B) £ 28 as n — oo, it sufficies to show that

Vm(An(Br) — An(B)) = 0p(1) as n — co. (A.4)
Now

VM (An(Bn) = An(B)) = (a*(Bn) — 6*(B))VmRa, (A.5)
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where

(Xn—-[m/2]+1:n_ n—2[m/2]+1:n)(Xn—2m+1:n" n—4m+1:n)
(Xn —2[m/2]+1:n — n—4[m/2]+1:n)(Xn—m+1:n*' n—2m+1:n)

{a (ﬂn)( n—2[m/2]+1n — n—4[m/2]+1:n) + (Xn—2m+1:n - n—4m+1:n)} .
x{a*(B)(Xn—-2im/2)+1:n — Xn—tfm/2+1:n) + (Xn-2mt1:n — Xn—am+1:n)}

Then, by (A.1), within the error bound O((m/n)’y/m + m/n) in variational
distance R,, behaves like RS) =

(A +[m/27 S ) =8 — 2+ [m/2) 7 TP )Py
{(2m/[m/2] +[m 2]} S 1) = (/[ /2] + [m /2] 21T, ) )
{2+ [m/2] 7' X2 "’/21711) b~ (44 [m/2 " T )P}
{mm/2) + /2 0, 1)~ — @mJlm)2] + /2] 20 )5
{a*(Ba) (2 + [m/2 "L X )8 — (4 4 [m/2) ! i3/ m)?)
+((2m/[m/2) + [m/2)~1 >:?=1m> =8 — (4m/[m/2] + [m/2]"} I n:)~#))
x{a*(B)((2 + [m/2t 27 )-8 — (4 4 [m/2)t i )7
+H((2m/[m/2] + [m/2 " T )P — (4m/Im/2] + [m/2) 7} S m)~P))

where n; + 1,70 + 1, ... are i.i.d. standard exponential random variables. Again,

similarly as in the proof of Lemma 2.1, by applying (A.2) and then by using the
Taylor expansion (14 z)™# =1 -3z +0(z?) as z — 0, it can be seen that within
the error bound O(1/4/m) in variational distance Rsl) behaves like

B{(2P -2)Z,+ (2P +6)Z,~(3-27° + 2)V22Z; + 27817}
- Op(1/m),
4(1 = 278)(a*(Bn) + 277)(a*(B) + 27P)V2m
where Z1, Z3, Z3, Z4 are independent standard normal random variables. Thus in

all, within the error bound O((m/n)%y/m+m/n+ 1/4/m) in variational distance
vmR, behaves like

BY
2(1 — 2-8)(a*(Ba) + 278)(a*(B) + 27P)

+ OP(]'/M)a

where Y is a normal random variable with mean 0 and variance 3-272/ +4.2-8 46.
Since a*(3,) D a*(8) as n — oo, (A.5) therefore implies (A.4). This completes
the proof. O



72 Seokhoon Yun

REFERENCES

de Haan, L. (1984). “Slow variation and characterization of domains of attrac-
tion,” in Statistical Eztremes and Applications, ed. J. Tiago de Oliveira,
Reidel, Dordrecht, pp. 31-48.

Dekkers, A. L. M. and de Haan, L. (1989). “On the estimation of the extreme-
value index and large quantile estimation,” Ann. Statist., 17, 1795-1832.

Drees, H. (1995). “Refined Pickands estimators of the extreme value index,”
Ann. Statist., 23, 2059-2080.

Falk, M. (1986). “Rates of uniform convergence of extreme order statistics,”
Ann. Inst. Statist. Math., 38, 245-262.

Falk, M. (1994). “Efficiency of convex combinations of Pickands estimator of the
extreme value index,” J. Nonparametric Statist., 4, 133-147.

Falk, M., Hiisler, J. and Reiss, R.-D. (1994). Laws of Small Numbers: Extremes
and Rare Events, Birkhauser, Basel.

Hill, B. M. (1975). “A simple general approach to inference about the tail of a
distribution,” Ann. Statist., 8, 1163-1174.

Pickands, J. (1975). “Statistical inference using extreme order statistics,” Ann.
Statist., 3, 119-131.

Reiss, R.-D. (1989). Approzimate Distributions of Order Statistics, Springer,
New York.

Smith, R. L. (1987). “Estimating tails of probability distributions,” Ann. Statist.,
15, 1174-1207.

Wellner, J. A. (1978). “Limit theorems for the ratio of the empirical distribution
function to the true distribution function,” Z. Wahrsch. verw. Gebiete, 45,
73-88.



