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A Bayesian Test for Simple Tree Ordered Alternative
using Intrinsic Priors

Seong W. Kim!

ABSTRACT

In Bayesian model selection or testing problems, one cannot utilize stan-
dard or default noninformative priors, since these priors are typically im-
proper and are defined only up to arbitrary constants. The resulting Bayes
factors are not well defined. A recently proposed model selection criterion,
the intrinsic Bayes factor overcomes such problems by using a part of the
sample as a training sample to get a proper posterior and then use the
posterior as the prior for the remaining observatons to compute the Bayes
factor. Surprisingly, such a Bayes factor can also be computed directly from
the full sample by some proper priors, namely intrinsic priors. The present
paper explains how to derive intrinsic priors for simple tree ordered exponen-
tial means. Some numerical results are also provided to support theoretical
results and compare with classical methods.

Keywords: Intrinsic Bayes factor; Intrinsic priors; Jeffreys’ priors; Noninforma-
tive priors; Order restricted maximum likelihood estimator

1. INTRODUCTION

In reliability theory or survival analysis, we often encounter the following
testing problem,

My:ipo=pr="- =g, v8
My : max{p1,...,px} < o, (1.1)
where pg is the mean of the control group and u;, ¢ = 1,...,k are the means

of k treatment groups for certain distributions such as Exponential, Normal or
Weibull. Robertson, Wright and Dykstra (1988) found the asymptotic distribu-
tion of the generalized likelihood ratio test statistic for M; against My — M, for
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the exponential family using level probabilities. However, for small sample sizes,
the results from asymptotic approximations are often undesirable.

It has been noticed that the most powerful test or generalized likelihood
ratio test could be misleading, even when the sample sizes are large. Berger,
Brown and Wolpert (1994) showed that the test for a simple hypothesis against
a simple alternative on the normal means based on Neyman-Pearson Lemma
rejects the null hypothesis systematically while the Bayes factor is just 1. Sun
and Kim (1997) showed that the generalized likelihood ratio test for comparing
two exponential means rejects the null hypothesis automatically while the Bayes
factor is also just 1.

Ideally, one would choose proper priors or informative priors in computing
Bayes factors. However, limited information and time constraints often require
the use of noninformative priors. In this paper, we use a Bayesian approach to test
the problem given by (1.1) for the exponential distribution using noninformative
priors.

Noninformative priors such as Jeffreys’ priors (1966) or reference priors (Berger
and Bernado, 1989,1992) are typically improper, and thus are only defined up to
arbitrary constants, which affects the values of Bayes factors. Berger and Peric-
chi (1996b) introduced a new model selection criterion, called the intrinsic Bayes
factor (IBF) using the training sample method, which would remove the arbi-
trariness of improper priors. The training sample idea has been informally used.
See Geisser and Eddy (1979), Spiegelhalter and Smith (1982), San Martini and
Spezzaferri (1984), and Gelfand and Dey (1992) for related work. There has been
some work using the IBF criterion. Berger and Pericchi (1996a) discussed some
problems in linear models with several different error distributions. Varshavsky
(1996) made use of the IBF for a stationary autoregressive process. Lingham
and Sivaganesan (1997) conducted a test for the shape parameter of the power
law process. Sun and Kim (1997) derived several intrinsic priors for testing equal
means against the ascending ordered exponential means. Kim and Sun (1997)
analyzed comparisons of two exponential means using the encompassing model.

The present article is organized as follows. In Section 2, we review the concept
of Bayes factors and intrinsic priors. In Section 3, we derive a general form of
intrinsic priors for testing equal means against ordered means for £ + 1 indepen-
dent exponential distributions. Special cases when £ = 1 and k = 2 are examined
in detail. In Section 4, we provide some numerical results along with real data
analysis to illustrate theoretical results. We finish this paper with concluding
remarks in Section 5.
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2. PRELIMINARIES

Suppose we want to select a model among ¢ different models My,..., M,. If
the model M; holds, the data X = (X3,...,X,) follow a parametric distribution
with the density f;(X|6;), where 6; is a vector of unknown parameters. Let ©;
be the parameter space for ;. Based on observations X, one wants to select the
correct model M; among q possible models. Let m;(6;) be the prior distribution
for §; under M;, and let p(M;) be the prior model probability of M; being true,
for i = 1,...,q. Then the posterior probability that M; is true is

q

P(Mi|X) = [Z
where Bj;, the Bayes factor of the model M; to the model M;, is defined by
m;(X)  Jo, £3(X|0;)7;(8;)d8;
mi(X)  [o, fi(X[6;)mi(6;)d8; ’
where m;(X) is the marginal or predictive density of X under M;. The posterior

probabilities in (2.1) are used for selecting the most plausible model. If we use a
noninformative prior 7} (6;), (2.2) becomes

MY X) Jo, £3(X10;)m Y (6;)db; 53
Um(X) [, fi(X6:)w Y (6:)d8; (23)

1

] , (2.1)

Bj; = (2.2)

A noninformative prior 7riN (8;) is often improper, and is defined only up to an
arbitrary constant c;. Thus, Bfi’ is defined only up to (c¢;j/c;), which is also
arbitrary so that the Bayes factor is not well defined. One remedy for removing
this arbitrariness is to use a part of data as a so-called training sample. Let X(I)
be a training sample and let X( I) be the remainder of the data. First, compute
the (intermediate) postenor 7 (6;)X (1)), then compute the Bayes factors with
the X(—1) as data, using 7 (6;|X(l)) as the prior. Consequently, the Bayes factor
is as follows:

Jo, fi(X(=1)16;, X (@) (81X (1))db;
Jo, Fi(X(=1)16:, X ()} (8:X (1)) d0;
BJl - BY(X(), (2.4)

Bji(l) =

i

where for h =1, 7,

md (X (1)) = / Fu(X(D)181)7Y (61)dh.
©p
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In practice, X(!) is chosen to be minimal in the sense that the marginal m} (X (1))
is finite for all possible models, and no subset of X(l) gives finite marginals. Note
that in (2.4) Bji(l) does not depend on arbitrary constants and thus is well
defined. Furthermore, the Bayes factor defined by (2.4) depends on the choice
of the minimal training sample. To avoid this dependence, Berger and Pericchi
(1996b) suggested taking the average of Bj;(l) over all X(I).

Definition 2.1. The arithmetic intrinsic (AI) Bayes factor of M; to M; is given
by

1
Bl = 5 ZB], =BJ, - ZB (X(1)), (2.5)
where R is the number of all possible minimal training samples.

Define the correction factor, CFA;; by
CFA; = Z BN (X(1)). (2.6)

By virtue of (2.5) and (2.6) we have
BAT = B} - CFAy;. (2.7)

Noticing that computation can be lengthy if R is large, Berger and Pericchi
(1996b) proposed the use of the following quantity as an approximation of (2.7).

Definition 2.2. The ezpected arithmetic intrinsic (EAI) Bayes factor of M; to
M; is given by

BEAI — BN . IZE )], (2.8)

where éj = énj is the MLE of 0; based on n observations.

Alternatively, Berger and Pericchi (1996b) suggested finding a pair of proper
priors such that the Bayes factor using proper priors will be asymptotically equiv-
alent to Bﬁ’ . Such priors, if they exist, are called intrinsic priors. We need the
following conditions to define intrinsic priors.

Condition 1 Under Mj, éj — 0; a.s. and 6; — ¥i(05), as n — oo.
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Condition 2 Under M;, ; = 6; a.s. and éj - 1;(6;), as n — co.
Here éh is the MLE of 85, under model M}, and v, is a known function, for h = 1, 5.
Normally we use

$i(6;) = lim E;5 (). (2.9)

n—oo

Berger and Pericchi (1996b) showed that a pair of intrinsic priors (n/, 7rJI- ) is

a solution of the following system of functional equations:

7L (07N (;(8;
HCLAICIO) R,
m (05)7; (¥:(6;)) (2.10)
WO O) g '
N ((0:)) 7] (6:) P
where for h =1, j,
. R
Bi(6w) = Jim EY[= S BY(X()] (211)
=1

The noninformative priors 7)Y (4;) and 7r]N (6;) are called starting priors. We note

that solutions are not necessarily unique nor necessarily proper. It is of interest
to find proper intrinsic priors for given starting priors. Once we derive proper
intrinsic priors, BJ’-‘%I can be replaced by the ordinary Bayes factors computed
based on intrinsic priors.

3. MAIN RESULTS

3.1. Results for arbitrary k

Suppose that we have independent observations X;; ~ Ezp(u;),1 =0,1,...,k;

b

j=1,2,...,n;. We want to select between two competing models given by (1.1).
Let
n
- = Xi
Xi. = ZX” and Xi = —;—L-:

J=1

Define the total sample size N by N = Zf:o n;. Assume that there are k + 1
constants a; € (0,1) such that ap + a1 +:--+ar=1and fori =0,...,k,

n;
—N%aiasN—)oo. (3.1)
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Let Ly = {pg = (po, .- -, pg) : 0 < max(pi,...,ur) < po < oo}. We use Jeffreys’
priors as starting priors for both models M; and M;. The reason to choose
Jeffreys’ prior under model M; is obvious. Under model M; with k = 1, Jeffreys’
prior is both the reference prior and the matching prior when either parameter is
of interest (cf. Ghosh and Sun, 1997). Analogously, we start from Jeffreys’ prior

for arbitrary k. Let u be the common value of y; under M;. Then

1 1
Y () = % >0, and ™) (py) = YT By € L.

Recall that BY = mlY(X)/m{ (X), where

i=0
and

k
1
N
m) (X)=/L 2 ..unk+1exp{ > z}oluk.
=0

x Mo k

A typical minimal training sample is X({) = (Xongs X1h1s---» Xkhy)-

marginal densities of X(I) are

[k +1) )
(Xong + - + Xgn )F+Y

md (X)) = !

my (X(1))

I

Xiny o Xihy (Xong + -+ + Xin,)

Thus the Bayes factor based on the training sample X(I) is

Lk + 1)X1p, - Xkn,
(Xong + + -+ + Xk, )¥

Consequently, the AI Bayes factor and the EAI Bayes factor are

Bih(X() =

Bl = BY. (JFA12

= 321

S5 3 B

khol hi=1

and

B! = BY - E; " BL(X(),

respectively. We need to find 1(62) and %2(6;) in Conditions 1 and 2.

6, = p and 6 = p.

Then the

(3.2)

(3.3)

(3.4)

Here
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Fact 3.1. a) The MLE of 4 under M, is given by

p=NTY "X (3.5)
b) The unrestricted MLE of p; is given by

=X, i=0,...,k (3.6)

Let fiy = (fto,--.,fx) be the restricted MLE of u; under M. Note that
[t can be computed by several algorithms. See Robertson et al. (1988). For
example, when k = 1,

21 = (fo, 1)
= (70’71)1(—0271)+(ﬂ,ﬂ)1(_X0<—X-1)7 (37)
and when k£ = 2,
oy = (fo,f1,02)
= (Xo0,X1,X2)1(X1 < X2 < Xo) + (Xo0,X1,X2)1(X2 £ X; < Xo)
Xo +Xo. — Xo. + X — _— —
+ (B X, 21X < X < Xo)
ng + no ng + N9
Xo + X1 Xo.+X1 — — — —
: XXy <Xo<X
+(n0+n1 — 2)1(X2 < Xo 1)
+ (@4, 8)1(Xo < X1 < X3) + (i, f, 2)1(Xo < X2 < X1), (3.8)

where [i is given by (3.5).

Proposition 3.1. a) Under Ms, when N — oo, we have

01 & — Y1) Zazﬂz a.s.,

where [i is given by (3.5) and a; is given by (3.1).
b) Under My, when N — oo, we have

02 = o — a(p) = (n,..., 1) as

Proof: For a) it is simple. For b), under M5 we have the following inequality
(see Robertson et al., 1988, p. 40),

k k
2Ny n;
Z[ﬂz i) _A—, < Z - Ni]2ﬁ1 (3.9)
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where } is given by (3.6). By the strong consistency of the unrestricted MLE
of y; and the assumption (3.1), the right-hand side of (3.9) converges to zero as
N — oo. Thus, the left-hand side of (3.9) also converges to zero. The result
follows from the fact that under M;, yu; = pu for each ¢ =0,...,k. a

Clearly Bj(6)) depends on k, the total number of treatment groups. To
distinguish the quantities By (6) for different k, we write By, (0n) = Bj ().
From the definition (2.11), we see that

X Xp
(Xo1 + -+ Xk1)®

B (6n) =T(k + 1) E}™

},h:l,z.

For any k > 1, define
Ap = {wp=(w1,...,wg) : 0 <wy,...,wx <1} (3.10)

Proposition 3.2. The quantities Bf,(01) and B3, (02) are given by

) ) wy Wk ['(k+ 1)?
Bip(p)=T(k+1) /Ak (ro + 71+ -+ rg)Ft1 Wk ok (3.11)
and
I‘(k+1)2/ wy - Wk
B* —_ dwk, 312
Zk(“k) Ho- bk JA, [TO/H0+"'+7‘k/I~‘k]k+l ( )
where
{r0=1-1U1—w2""'—'wka (3.13)
T =W, T2 = W2,...,Tk = Wk

Proof: We first derive Bj,. The joint density of (Xo1,...,Xx1) is given by

k
1 .
f(zot, ..., %e1) = (H—>€XP{—(ﬂ+---+-xk—l)}, zin >0, 0<i <k

prd Ko ok
Making the following transformations,

X
Wy = g2ug, Xor = Wit (L — Wy — -+ — W),
Xo1 —
Wy = Xor+Xg1? X = W1Wk:+17
. or

X —
Wk = 701—_&{7;?, Xk—l,l = Wk—IWk+1,

Wit = Xo1 + -+ + X, X1 = WiWiy,

(3.14)
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we have
B (p1, .-y pk) = T(k + DE(W1Wa - Wy). (3.15)

The Jacobian of this transformation is

IJ| _ a(xO].amllv"'amkl)
a(wl’w2a"'7wk+1)
~Wg41 —Wg41 0 l—wip—-wg
W41 0 wy
= 0 W4l w2
0 0 W
W41 —Wky1 v l—wr—e-wg
O —wk+1 PRCEEY 1—.w1—.-.wk
= 0 0 —Wgy1 1l —wy — - wyi
0 0 1
ok
= Wkt

The joint density of (W1,..., W41) is then

k
Wit

70 Tk
f('lU1,---,'lUk+1) = eXp{—’LUk+1(—-
Ko k Ho

ok Ry,

where w;, € Ax and wiy; > 0. Integrating with respect to wgyq, we get the
following joint density of (W1i,..., Wy)

I'(k+1)
po - pklro/mo + - i/ p)EE
where the r;’s are defined by (3.13). Hence equation (3.12) is established. Note
that Z;C:O r; = 1 in (3.13). Since y; = p under M, equation (3.11) immediately
follows from (3.12). This completes the proof. O

g(wk) = Wi € Ak7

The system of equations (2.10) becomes

1
7T2([1k)/(a0u0+ o+ agfig) *
=B H )a My € Ly,
W{,(%uo + o 4 agpr) /(o - pik) i) e (3.16)
TWI/B g s
wl () k1t IR T

where 15 = (1,...,1) € R*¥*1,
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Lemma 3.1. B, (uy) — B (1) as py — ply, where the limit p, — ply
is taken within the region p; € Ly.

Proof: Since Wy --- W is bounded, it follows from (3.15) that By, — B}, as
pr — plg. This completes the proof. a

Lemma 3.2. For any integer | > 1, and any constants r; € (0,1) satisfying
7‘0+"'+’I"l=1,

1 1
ds; = :
/A,S%S?(TO'FTI/SI'F+"'l/3l)l+1 l l!rl...rl(r0+r1+...+"-l)

Proof: We use induction. For [ = 1, we have

/ 1 o1 1
A $3(ro +r1/s1)? Yo+ r)

Assume that the result holds for | — 1. Now for [, we have

/ L ds
!
Ay s2oosHro+ri/si+ - + /st

! ! dsi_1. (3.17)
= T Si-1. .
Iry Ja,_ 82 st (ro+rifsi+ - +rifsia+r)b

By the induction assumption, (3.17) becomes

1 1 1
(= q(ro+--+r) Uri-omlro+-+m)

Hence, the result also holds for I, which completes the proof. O

Lemma 3.3. Define

80 = o, 81=ﬂ, 82=E;2-,...,3k=&. (3.18)
o Ho Ho
Then B3, depends only on si = (s1,...,5).
Proof: It follows directly from (3.12). O

Theorem 3.1. For any proper density g(-) on (0,00), the set of intrinsic priors

I
my(p) = g(p), 0 <p < oo,

appo + - - + Qg lik
2 () = s o 1k By (i) (aopso + -+ - + arpsr), py € L

(3.19)

s

is a solution of (3.16), where B}, is given by (8.12). Furthermore, 7} is a proper
density on L.
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Proof: From Lemma 3.1, we can see that (3.19) is a solution of (3.16). The
Jacobian of the transformation from g to (sg, sg) in (3.18) is

O(po, - - » ik
1| = \_(____“_) = sk,
8(30,...,Sk)
So,
00
/ / 7!'%(30,... ,Sk)dS(]dSk
AL JO
2 1 °° I
= I'(k+1) 5 5 (ag + ay181 + -+ - akSk) 7] [30(a181+"'
Ay Sl'“’sk 0

wl EEEEE wk
d d. .
+ak8k)] SO} {/Ak [ro +ri/fs1+---+ Tk/Sk]k+1de} o (3:20)

where Ay and the r;’s are defined by (3.10) and (3.13), respectively. Let 7 =
so(ag + a1sy + -+ + agsg). Then dso/dT = (ap + a181 + - + arsk) !, so (3.20)
equals

wy - Wk
Fk+12/ / dspdwy. 3.91
( ) A, JA, S%-usi[’ro—{—rl/sl+...+rk/3k]k+1 k k ( )

From Lemma 3.2, (3.21) reduces to I'(k + 1). This completes the proof. a

The following theorem explains the structure of the intrinsic prior 7d (pg)-

Theorem 3.2. a) The marginal intrinsic prior of si s

h
Tré(sk) X k(Sk) , Sk € Ak,
81" 8k
where
hk(sk) =B;k(1a31732,"'a3k)7 8¢ € Aka (322)

and the normalizing constant is 1/T'(k + 1).
b) The conditional prior of so given si 1s

73 (s0lsk) o< m{ (Aso), so >0,

where
A=ag+asy1+ -+ agSk.
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Proof: For part a), it follows from (3.19) that the joint intrinsic prior of (s, s¢)
is

A

wg(sk, 8g) = o B3 (50,5081, - - - ,sosk)w{()\so). (3.23)

Applying Lemma 3.3, the desired result follows from integrating equation (3.23)
over sg. The proof of part b) follows directly from part a). a

Remark 3.1. Clearly, from Theorem 3.1 we can see that there are infinitely
many proper sets of intrinsic priors. However, if we choose the conjugate prior
for model M, that is, the Inverse Gamma prior, the computation should be
tractable for both M; and Ms.

Corollary 3.1. When g(t) is the probability density function of Inverse Gamma
(&,v), the pair of intrinsic priors is

I(
m () 52“&1

exp{—v/(aop1 + - - + agpir)}
T = B , € Ly.
(k) = T(¢)(app1 + -+ + appr) s - - - pk i), pox € L

, 0 < <o,
(3.24)

Once we choose a special class of intrinsic priors given by Corollary 3.1, there
could be a sensitivity problem in terms of hyperparameters (£,v). Thus, we
suggest another set of intrinsic priors which does not depend on hyperparameters.

Theorem 3.3. Set wi(u) = nl¥(n). Write nd(ug) = wd(uy,. .., melpo)md(uo)-
Then

mi(u) =7 (1), 0 < p < oo
7ré(/"O) = W{V(,U'), 0< ,U'O(< C;O, (3.25)
*
u
71'5('[1, ’ nu'klp’o ALt y Mg € Lk‘
-
is a solution of (8.16). Furthermore, mi(u1, ..., pxlio) is a proper density on Ly.

Proof: It readily follows by an identical argument as in the proof of Theorem
3.1. O

Remark 3.2. Obviously, the intrinsic priors mj () and T (o) are improper.
However, when we compute Bayes factors with these intrinsic priors, the un-
specified arbitrary constant in wJ¥ (1) is cancelled out. Thus, the resulting Bayes
factor is well defined.
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3.2. Special cases when k=1 and k =2

We now derive the closed forms of 7} (sx) when k =1 and k = 2.

Proposition 3.3. The quantities hi(s1) and ha(s1, s2) are given respectively by
{1,) hl(Sl):Bgl(l,Sl), 0<s; <1,
b)  ha(sy,s2) = Biy(1,81,82), 0<s1,82 <1,

where
( log sy + 51 — 1)
h , 0 .
L1(81) (1 — 81)2 < s <1, (3 26)
and
289 S1 log(51 + 89 — 5152) S9
h = — 1
2(s1,52) (1-s1)(1 —52)2{ 1 -5 S1 + 82 — 81892 T
0 < sp,82 < 1. (3.27)

Proof: From (3.12) the quantities B3, and Bj, are

1
wun
B3y (po, p1) = L01/ : dwy
a1 ko, 1) o o w1+ (po — p1)wi)?
= __M_l (Hoy L L,
(N»o ~ 1) p1’ o ko
W1 Ws
B; JU1, 1 = / / dwdws
52 (140, 1,5 142) Y = ETEETE—TYE 1
_ 2pg 112 [m log(pop1 + poka — Hiz)
(10 = 1) (po — p2)? fo — 1
‘ — - 2p
_ o2 " Mo — #1 oguo} (3.28)
HOp1 T+ Hopt2 — fh1H2 Ho = H1
y (3.22) the desired results are established. O

Figure 3.1 is the plot of the marginal intrinsic prior density 7 (s1) of 51 =
p1/po when k = 1. Here, mi(s1) = hi(s1)/s1. Note that n}(s1) is monotonic
decreasing, and converges to 0.5 when s; — 1. Although 74(s1) is unbounded at
51 = 0, it is integrable. Figure 3.2 is the perspective plot of the marginal intrinsic
prior density of s1 = pi/po and s; = pg/pe when k = 2. Here ml(s1,82) =
ha(s1,s2)/(s152), which is unbounded as s; — 0 and s — 0, but it is integrable.

For k = 1 and 2, with the pair of intrinsic priors given by Corollary 3.1,
we derive the closed forms of the ordinary Bayes factors, which are denoted by
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Figure 3.1: The marginal intrinsic prior density of 7{(s;).
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Figure 3.2: The marginal intrinsic prior density of 74(s1, s2)
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B{(X) and Bi?(X) respectively. We also compute the ordinary Bayes factors
with the pair of intrinsic priors in Theorem 3.3. These are denoted by B*(X)
and Bi2*(X)

Proposition 3.4. al) For a pair of intrinsic priors in (8.24) we have
(X) = (Xo. + X1. + v)$ T M H (X, X1, a0, a1), (3.29)

where

s§+"°_1(ao + ays1)™ by (sy)
[81 (a() + alsl)Xo. -+ (a() + alsl)Xl. -+ V81]£+n°+n1

1
HI(X0~’X1-,a0aa1) =/ dSl.
0

al’) For a pair of intrinsic priors in (3.25) we have
BI*(X) = (Xo. + X1.)" ™M HY (X, X1.), (3.30)

where .
Sno_ h1 (81)

1
Hi (Xo.,X1) = L d
1( Ole) A (31X0.+X1.)"0+"‘1 51,

where hy(-) is defined by (3.26).
b1) Similarly, for k = 2, Bi3(X) is given by

1
BE(X) = i(XO' + X1 + X2 + V)™V Hy(Xo., X1, X2, 00,a1,02),  (3.31)
where

H2 XO aX1 7X2 aao’a17a2)

/ / E+no+n2 1S§+no+n1 1h2(51,82)(ao +ais +a252)‘5 e s
X1.32 <4 X2.81 -+ 3182(X0. + 1//(a0 + aiSi + a252))]§+N 1822
b1') For a pair of intrinsic priors in (3.25) we have
1
B (X) = 5(Xo + X1+ Xo)VH3 (Xo., X1, Xo.), (3.32)

where

no—+—n2 1 n0+"l lh ( )
2151, 52
dsidss,
H;(Xo., X1., X2.) / / [X132+X231+3182X0]N e

with N = ng + n1 + ng and hy defined by (3.27).

Proof: It is straightforward. O
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* 4, NUMERICAL EXAMPLES

Example 4.1. Suppose that we want to select between two models My : o = py
and M3 : 11 < pg. The P-value is F(X1/Xo;2n1,2n0) based on the generalized
likelihood ratio test, where F(-;2ny,2ng) is the cdf (cumulative distribution func-
tion) of an F' distribution with 2n; and 2ng degrees of freedom. To illustrate the
difference between the frequentist method and the Bayesian model selection pro-
cedure under the intrinsic priors developed in Section 3, we examine the cases
when Xo/X; = 1,2,3, and ny = n; = 12,20, 30. The P-values for some choices
of ng and n; are given in the column 3 of Table 4.1. The Bayes factors and the
posterior probability of My being true are computed for three choices of (¢,v)
assuming equal prior model probabilities. They are (0.01,0.01), (1.0,1.0) and
(10,10). We see that the posterior probabilities are bigger than P-values. For
the cases when Xg /Yl = 2,3, as the sample sizes become larger, the Bayes fac-
tors will select My. Moreover, the Bayes factors are quite robust in terms of the
change of the values (&, v).

Table 4.1: P-values, Bayes factors, and P(M;|X) for testing M, : po = py versus
Ms 2 py < po.

(¢,v) = (01,.01) (£,v) =(1.0,1.0) (&)= (10,10)

n (X1,Xo) P-value B2y P(Mi|X) Ba P(M|X) Ba P(MX)
12 (1.0,1.0) 0.5 0.23027 0.81283 0.22983 0.81312 0.22711 0.81492
(1.0,2.0) 0.04805 1.54115 0.39352 1.52474 0.39608 1.44197 0.40950
(1.0,3.0) 0.00465 10.5823 0.08634 10.4746 0.08715 10.3576 0.08805
20 (1.0,1.0) 0.5 0.18258 0.84561 0.18244 0.84571 0.18146 0.84641
(1.0,2.0) 0.01549 3.19048 0.23864 3.17004 0.23981 3.05367 0.24669
(1.0,3.0) 0.000373 81.8325 0.01207 81.3373 0.01215 81.2479 0.01216
30 (1.0,1.0) 0.5 0.15129 0.86859 0.15124 0.86863 0.15083 0.86894
(1.0,2.0) 0.004055 8.56653 0.10453 8.53005 0.10493 8.30891 0.10742
(1.0,3.0) 0.000018 1182.77 0.00084 1178.03 0.00085 1180.56 0.00085

Example 4.2. The following data, given by Proschan (1963), are time intervals
of successive failures of the air conditioning system in Boeing 720 jet airplanes.
We assume that the time between successive failures for each plane is independent
and exponentially distributed.
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plane 0 | 74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27, 153, 26, 326
plane 1 | 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12,
120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95

plane 2 | 97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82, 54,
31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24

Let uo, p1, and po denote the means of successive failures for plane 0,1,2
respectively. In Table 4.2, we provide Bayes factors and the posterior probabilities
PI(M,|X) for testing equal means (M; : pg = pu1 = pp) against the simple tree
ordered means (Ms : max{p;,p2} < po) for failure times of three planes. The
P-value is 0.0347 which is computed based on asymptotic procedures by a x?
test using level probabilities (cf. Robertson, et al., 1988). The Bayes factors
for the full sample were computed by (3.31) with six choices of (¢,r). They are
(1,1), (1,10), (1,20), (1,30), (1,33), and (1,40). The computation here requires
two dimensional numerical integration, which is done by IMSL routines. As a
comparison, we also compute the Bayes factor using (3.32), which is denoted
by B2* in Table 4.2. There is a disagreement between the P-value and Bayes
factors. When we just look at the sample means of each set of data, it seems
that there is a strong evidence for supporting model Ms. However, we can see
that three particular observations 502, 386 and 326 in plane 0 enlarge the sample
mean X, which makes the P-value very small. Meanwhile, Bayes factors give
fairly reasonable answers. We notice that the EAI Bayes factor does not give
a good approximation. However, the ordinary Bayes factor Bi? computed by
(3.31) with € =1 and v = 33 is very close to the Al Bayes factor B3}’.

Table 4.2: Bayes factors and P!(M;|X) for testing M) : po = p1 = pp versus
My : max{pi,p2} < po for airplane data. Here (ng,ni,n2) = (15,30,27), and
(X0, X1, X5) = (121.27,59.60, 76.81)

Bayes factor  P'(M;|X)

Al 0.8707 0.5345
EAI 2.7238 0.2685
(6,v)=(1,1) 1.3108 0.4327
(&,v) =(1,5) 1.2463 0.4452
(&,v)=(1,10) 1.1701 0.4608
(¢, v)=1(1,20) 10317 0.4922
(&,v) =(1,30)  0.9099 0.5236
(6,v) =(1,33)  0.8762 0.5330
(&,v) = (1,40)  0.8026 0.5547
B 1.3529 0.4250
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5. CONCLUDING REMARKS

There has been a considerable amount of literature on the controversy between
a P-value and a Bayes factor. It has been noticed that, more often than not, a
P-value does not agree with the posterior probability that the null hypothesis
is correct. Delampady and Berger (1990) have shown that the lower bounds
of posterior probabilities in favor of null hypotheses are much larger than the
corresponding P-values. Meng (1994) also found some discrepancy between the
P-value and the Bayes factor by introducing posterior predictive P-values. See
Kass and Raftery (1995) for more details.

The IBF methodology provides fully authentic Bayes factors in the sense of
dealing only with default or standard noninformative priors. It is well defined
and seems to be reasonably close to actual Bayes factors. The IBFs can be easily
applied to nonnested as well as to nested model selection problems. They can
also be applied in general when the samples come from any distribution.

As we see from numerical results, P-values tend to reject the null hypothesis
frequently. Furthermore, P-values are computed based only on sufficient statis-
tics, which might be misleading for some cases. The average intrinsic Bayes
factors are computed based on entire observations so that they give accurate
interpretations and fairly steady answers.
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