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The Effect of First Observation in Panel Regression Model
with Serially Correlated Error Components?

Seuck Heun Song?

Abstract

We investigate the effects of omission of initial observations in each individuals in
the panel data regression model when the disturbances follow a serially correlated one
way error components. We show that the first transformed observation can have a
relative large hat matrix diagonal component and a large influence on parameter
estimates when the correlation coefficient is large in absolute value.

1. Introduction

In the usual linear regression model with first-order autoregressive(AR(1)) disturbances,
the importance of the initial observation has been well documented. See Kadiyala(1968),
Poirier(1978), Maeshiro(1976, 1979), Doran(1981) and Kraemer(1982). Recently, Puterman(1988)
considered simple regression models with AR(1) disturbances and sensitivity of leverage with
respect to a varying correlation coefficient. It is shown there that in case of one regressor
the first transformed observation frequently has a large hat matrix diagonal and consequently
its deletion might have a major impact on the parameter estimates.

In this paper we extend the results of Puterman(1988) to the general linear regression
model. In the following we consider the panel regression model with serially correlated one
way error components. To investigate the effects of omission of initial observations in each
individuals, we will demonstrate that presence or absence of a constant term is highly

influential on the first leverage when the correlation coefficient of the disturbances is large in
absolute value.

2. The Model

We consider the following panel data regression model:

Vie = glﬂjxjit + Uy, i=1,2,- N, t=12,-,T, (2.1)
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where y,,; is an observation on a dependent variable for the ith cross sectional unit (firms,
individuals) for the #th time period, x;; is an observation on the jth nonstochastic regressor

for the 7th cross sectional unit and fth time period. The model (2.1) can be written in matrix
notation as

y =XB+ u, (2.2)
where y is an NTx1observation vector, X is an NTXk regressor matrix, B is a kX1
vector of regression coefficients to be estimated, and # is an NTX1 disturbance vector. Both

N and T are assumed to be larger than %. A popular specification of the disturbances is the
error components model, see Hsiao(1986). This paper focuses on an one-way serially
correlated error component model:

Uy = p;t Vi, i =12, ,N, t=1,2,--,T, (2.3)
where the p; are the unobservable individual specific effects which are assumed to be

i.1.d. (0,02,1). The v,; are the remainder disturbances which are also assumed to be
generated by AR(1) process (see, Lillard and Willis(1978) and Lillard and Weiss(1979)):

Vil= pyit—l + 61‘!1 |p|<1y Z.=1:2»“.:N, t=1,2,"',T, (2-4)
where the € ;; are i.i.d. (0, 62) and Var(v;) = o= d2/(1 — 0*) and ¢ is held constant in
what follows. The ;s and the v;’s are independent of each other. Under these

assumptions, the NT XNT covariance matrix of disturbances can be written as

Eluw) = 2=IyQZ = IyQ(dirir +AV), (25)
where Iy is an NX N identity matrix, ¢z is a TX 1 vector of ones, ® denotes the Kronecker

Product and V is the AR(1l) correlation matrix of order T:

2 e T-11
1 © e T-2
o 16 T
e o 1 0
V = . (2.6)
pT—l pT—Z pT—B 1

In this model, when 2 is known, the best linear unbiased estimator of B is given by
generalized least squares(GLS) estimator:
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B=(X'Q7'X) 'x'Q7'y . @7

The GLS-estimator for B can be also obtained by applying ordinary least squares(OLS) to
the transformed observation matrix [ Py, PX] (see Baltagi and Li(1991) and Baltagi(1993)).
That is,

Py= PXB + Pu, (2.8)
where P=IZyQ[Ur—8 J;")R:], (2.9)
(1-pHY 0 0 0
- P 1 0 0 ca - a,
with Ry = 0 R SN B S —‘1;,7‘1—— er = (a, tr-1"), (210)
0 0 1 0
0 0 -0 1
1+0 o v 2 1+p
a = ].“0 , Hzl—{ dz(l—p)zaf;i-oze and d°= 1_p+T_1. (2.11)

The error terms of the transformed model in (2.8) are i.7.d. and thus OLS applied to (2.8)
produces the GLSE of 8

B=[(PX)(PX)]"YPX) (Py). (2.12)

If we wish to detect influential observations the diagonal entries of the so-called hat
matrix play an important role for each individual ¢. In the context of our GLSE (2.12) it is
given by

Hi =X (X;"X))'X{ = P;X,(X;/P/P;X))"'X/ P/, (2.13)
where H; denotes the hat matrix for each individual ¢ and X; and X; denote also submatrix
of X* and X for each individual i, respectively, and P; = (Ir — 6 J& )Rp. It is well
known that the diagonal elements of H; satisfy 0 < h; <1. According to Belsley et al.
(1980, pp. 17) we call y*,-,v a high leverage point if h*,-,- > 2k/T. In the following we shall

concentrate on the first element of H; which is

By o= (XU XD T = -0 —%20— Vo o (X PIPX)  xas (2.14)
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where x%,  denotes the first row of X, and x;;’ denotes the first row of X;. It will be

seen that in some cases A% will be high value, dependent only on e and thus it is
questionable to delete the corresponding observation from the data set as a high leverage

point,

3. Main Results

Puterman(1988) considered simple regression models with AR(1)-disturbances and sensitivity
of 4% with respect to a varying correlation coefficient. In the following, we will extend this

approach to the panel regression model with serially correlated error components. In Theorem
1 and Theorem 2 we distinguish between the situations where a constant term is included
and where it 1s excluded from the model. The importance of the constant term for usual
regression models with AR(1)-disturbances has been mentioned before by several authors
including Berenblut and Webb(1973), Kraemer(1980, 1982) and Bhargava(1989). In the presence

of a constant term in (2.1), we will show that the leverage %} increases to 1 as o — 1. If

there is no constant term in the model the first leverage value %} decreases to 0 as p — 1.

As a result, we have the following theorems:

Lemma: Let C(X,) denote the range (column space) of a matrix.

If ¢r¢ C(X;), then Q;= X, D'DX; is nonsingular

Proof: Suppose @; is singular. Then there exists a nonzero vector v such that Q,v =10
which implies D’'DX;v= 0. Since the null space of D'D is generated by the vector ¢r we
see that Xv= Aycr for some scalar Aj. Furthermore, as v#0 and X is of full column

rank we have A;#0. This entails ¢ C(X;) which by assumption is excluded.

Theorem 1: Let C(X;) denotes the range (column space) of a matrix.

1) If ¢r¢ C(X;), then lim#iy = 0.
|

2) If ¢r is a column of X;, then lirr}hﬁ =1.
o

Proof: 1. For the matrix R+ from (2.10) we have
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0 - 0
limRr= [ ], (3.1
D

ol

where the (7—1) X T matrix D is given by

-1 1 0 - 0 0
p=|0 110 0 62
0o 0 0 - —11
Further it can be easily shown that
02 1/2
Making use of
S A oo de o fa
1,13} 7 0, lg_q} 2 0, I;LI} e 0, (3.4
we obtain lfig% 5}—% = (), (3.5)

Hence we obtain
lim (X;'X}) = lim (X,"P/ P;X;)
fad! —l

= lim X/ [z =0 Jr)R:] [Ur = 6 I:")R1] X,

= X,"D'DX;, (3.6)
1 -1 0 0 0
-1 2 -1 0 0
where DD= : : : 3.7
0 0 0 -2 -1
0 0 0 - =1 1

According to the Lemma the matrix Q,= X;D'DX; is nonsingular if ¢7 ¢ C(X;).

Consequently we get
13_:31&1 = 13_g}x;'(xz'xz ey

= lim (l—pz)(l - 'lze’ )2x ilr(Xz‘IP,',P,'Xi) —lx,-l = (. (3.8)
ld! d

2. When the first column of X, consists of ones, X;= [¢7, X 1], where X, is a

submatrix of size T X (k—1). Let us partitioned as
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s - S, -1
¢r P/P;er (7 PiP; X

(X/P/P; X)) ‘= (3.9)

(Au Ap
Ay Ap

Xy 'P/Piir Xy P/P,X;

By a well known inversion formula of partitioned matrices (Dhrymes(1995), p. 485) we derive

Ap=¢(1 + 7 PP X1 ApX o P/ Pitr), (3.10)
A12 = - (/1 t'T’P,',P,'X ,‘1A22, (3.11)
Ap=(XyP/P;Xy— Xy P/Piirty P/PX )7, (3.12)

where ¢=1/¢7 P/P;tr .

Let us write the first row of X; in the formx; = (1, x,’), where x; is a column

vector with ~2—1 entries. Then we have

K= (1= 69 A=) ey (X P PX) 'y

= (1 - pz)(l__zi‘ée“)z (Au + 2A12 ;C,l + ;Cz'l ,AZZ },'1 ) (313)
Qur first task is to show
lim(l—p2 )(1_"7% )2 .’«—V,'I'Azg _.7—6,'1 = (. (3.14)
o1 d

In (3.12) we observe that
P; "Tt.T’Pi’ = (Ir— 9f_Ta)RT ‘-T‘.TIRT’ (Ir— gf_ra)'

= Rpipt Ry —20 T2 Rotrt’ Ry + 682 J1" Rpept ' RY J1°°

Using lim§J% =0,
o1

I+p  (1=pH)" - (1= )"
1—peH" 1—=p = 1-0p
Rrirtr Ry = (1—-0) , , . : (3.15)
1= 1-p = 1-p

and

(FR/Rilr = 1—p?+(T—1)(1-p)?, (3.16)
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we can obtain

lim (/) P,‘L'T(.TI P," = elel', (3.17)
—l

where ¢, = (1,0,-,0)", and

. O vee 0
lisz’Xﬂ: lim (IT_ g ]TU)RTX,'I = { ]Xﬂ. (3.18)
1 1 D

From (3.17) and (3.18) it follows that

lim ‘/’Xil’Pi'Pi"T 5.T'Pi’PiXil = lim (Pan)' ‘/’Pi"T ‘.T’Pi, (P,‘Xu)
ol 1
10 0 - 0
= X,‘ll : D € el’ [ }Xﬂ
| 0 ] D
- 1T 0 -0
0 0 - 0
=xy|: p||00 0 [ lXﬂ:o (319
SRR S

which gives

D

0
limAy' = limX,; P/PX,; = X,l'[ D
1 :aad| O

[0 - O]X,1 = X, DDX;=Q, (320

where the matrix @, =X, D'DX,; is positive definite by the fact that (7 & C(X,)

(otherwise X; = (¢7,X ;) would be singular). Then we obtain
lim(1—0%) x4 An x4 = 0. (3.21)
pas}

Let us now consider the limit corresponding to the second expression in (3.13). Making use
of (3.1), (3.7) and (3.20) we obtain

i)

7 V4T PP Xy Ap %

lim —(1— 0% )(1—
o1

_Ta
d2
= — lfiygr} cr (Ir — eﬁ)'RT’RT(IT - e_ﬁ‘)XﬂAZZ ?Cﬂ

= ~lim (1= 0" )1~ =7 )’ g er (Ir = 0J2) Ry Rr(Ip— 6]§) X1 A %2

= — (' DDX;Q7 xp = 0. (3.22)
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The latter identify follows from ¢7 D' D= (. To find out the first limit in (3.13) observe that

lim(1— o )(1——L2)2g=1. 3.23)
o1 d

lim ¢*?P;cr = lim ¢"*Ry(I7 ~ 0J7) (7 = ey (3.24)
ol o1

Hence we have

_Te

2 )2A11 = 1. (3.25)

lim (1— 02 )(1—
o1
We will still investigate the case o— — 1. For this the vector ¢ = (1,—1,-,(=DT71Yy
plays a crucial role.

Theorem 2:

D If ¢ & C(X,), then Jirglh:}:O.

2) If (7 is a column of X; , then limlhﬁ = 1.
o
Proof: 1. Consider again the matrix R; from (2.9)
0 0
lim Rr= , (3.26)
o1 D

where the (7—1)X T matrix D" is given by

1 1 0 00
p=|0 1 100 (3.27)
0 0 O 11
and }1}910= ‘}Lrgl{l [ (1_0)262+02] } (3.28)
Thus
lim X;P,/P;X;= lim X/ [(UIr— 8 Jr )R)[ Ur— 8 JFRIX,;
o——1 ——1
= X, D" D" X, (3.29)

where D™ = (I+ — 6 J7°)D" and analogous to our Lemma, since ¢ ¢ C(X;), the matrix

Qi = X;/D™ D" X, is nonsingular. Then we find
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lim k3= lim (1—p0?)(1— —Tzﬁ— Vxy (X, P/P;X) ‘21 =0 (3.30)
=1 ——1 d

2. Consider X;=( ¢+ ,X ), and compute the inverse of X; P;P;X; partitioned as:

-1

(r 'P{P; {r r 'P{P;X; By, By
(X, P/P; X)) '= = , (3.31)
X,’l’P,"P,’ 5.7‘ Xil’Pi'PiXil B12 322
where Bll = "71 (1 + ZZJ t-T*’P," P,’X,‘]Bsz,’l'P,"P,' ‘.T* ), (332)
By = —¢ ¢7 P; P:X; By, (3.33)
By = (Xy P/P; Xy — $X'P/P; o7 r "P/PiX )7 (3.34)
where ¢= (1/ ¢7 P/ P; (7).
It suffices to show
. 2y T8z —
Hm (1 o )(1 2 ) Bll = 1, (335)
pr-1 a
lim (1- ) (1—-L2)2 B, %, = 0, (3.36)
-1 d
lim (1= ) (1=~ ) % By % = 0. (3.37)

However, these identities follow along the same lines as in the second part of Theorem 1, and
their proof can therefore be omitted.

4. Conclusions

In this paper, it was shown that presence or absence of a constant term is highly
influential on the first leverage when the correlation coefficient is large in absolute value. In

presence of a constant term we have shown that the leverage h:l increases to 1 as |p| — 1.

Thus in models with an intercept term and as |p| — 1, the first transformed observation has
a large hat matrix diagonal, and consequently its deletion can have a large impact on
parameter estimates. If there is no constant term in the model the first leverage value h:l
decreases to 0 as |p|l — 1. Hence the effect of the first transformed observation becomes

arbitrary small when p approaches 1.
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