tHEtmests| x| M178 3%, 1990 8% 17

Artificial Intelligence Estimation of
Network Flows for Seismic Risk Analysis

XN AT MM ABXS2EE 0188 HEYI DEUS oS

Kim, Geunyoung
(gt =ADEZE A 7Ah

= X
I. Introduction 5. Result Interpretation Module
II. Literature Review IV. Analysis and Results
M. Transportation Network Analysis 1. A Simple Synthetic Network
Procedure 2. Application of Associative Memory
1. Initialization Module Models
2. Identification Module V. Conclusions
3. Simulation Module References
4. Artificial Intelligence Module
2 o
ARAE 7% B8 FREE WIS YPX aFALY PRI (GAA ] A2E B 2R
o ANNEE B xR A Sl 24 R aPEd hale T2E BGEAIE AAE] 9

rlo
o,

@ $Hed 230 AHeslol Atk ANYUE BAYHEL @ 2Pl Aud FeES A A5l U
BFREFEL AHe3n Yok B AFE SR REA A6 F12 Roe A)auduge BN B
FEFRAE Yot MS-EARHA DEY BAPES Adohed Aok B AN AL 25T B
el Be ATATRoRN ALY Q719839 Agolth £ ATl AUE nEY BAPEE B
Kbl 5] The) mERez THE @EYe] FEUNAT. Y 28I 29 Adeleso) Ages ¥
I8 wEPINe BEFEE FHH) Akl TR YHHANYT )P 2EAZ B Aued B
WEFS W ole] APIARIES o8] ST, 1 E5Fe WK rd Al ez
Be) 243 2EY AZPoklN Ao 235 A Fe4e BT Aok

s

rlo




118 Joumal of Korean Society of Transportation Vol.17 No.3, August, 1999

| . Introduction

Earthquake is one of the natural disasters that
can cause severe damage to urban and transportation
systems. The 1994 Northridge earthquake in
Southern California and the 1995 Hyogken-Nambu
(Kobe) earthquake in Japan show how vulnerable
contemporary urban and transportation systems
are to major earthquakes. During the past five
years, earthquakes have caused nearly 77,000
deaths, over 160,000 injuries, the homelessness
of nearly 670,000 people, and property losses of
approximately $160 billion, worldwide (EQE Inter-
national and OES/GIS Group, 1995).

The State of California concerns infrastructure
safety for freeway bridges due to frequent occurrence
of earthquakes. Earthquakes are neither predic-
table nor escapable under current technologies of
earthquake engineering. However, impacts of earth-
quakes can be minimized if we develop improved
seismic risk mitigation strategies and programs.
The California Department of Transportation (Caltrans)
has developed bridge retrofit programs that
include seismic risk analysis (SRA) procedures
for structural re-enfor¢ement projects. Existing SRA
procedures use average daily traffic (ADT) volumes
to determine the relative importance of a bridge.
This is not adequate. The importance of network
links should be evaluated in terms of the additional
system cost due to failure. Incorporation of an
efficient transportation modeling technology in
the SRA procedures is essential to determine the
relative importance of bridges.

The objective of this research is to develop an
efficient transportation network analysis (TNA)
procedure for rapidly estimating traffic flows under
numerous scenario earthquakes, using a seven-zone
transportation network. An important feature of
the TNA procedure is the use of an associative
memory (AM) approach in traffic flow estimation.
The AM approach is a heuristic method derived
from the artificial intelligence field.

This paper is organized as follows. Section 0
reviews the literature on current seismic risk
analysis procedures. Section I describes the overall
features of transportation network analysis procedure
used for system-wide traffic flow analyses. The
basic framework and detailed structure of the
TNA procedure are presented. The section presents
modules including analytical methods for the TNA
procedure, relationships between the modules,
and required data sets for the modules. Analytical
methods employed for the TNA procedure are
also described.

Section IV describes the application of the
TNA procedure in simple network flow analyses.
This section consists of two parts. The first part
contains a simple synthetic transportation network
and traffic flow simulation. The second part includes
the estimation for synthetic network flows in case
of seismic risk analysis. A simple synthetic trans-
portation network is developed and wused to
evaluate the TNA procedure. The synthetic network
has seven zones and twenty-four directed links.
Network flows are simulated using a static network
equilibrium model and synthetic transportation
input data. Simple associative memory models,
recurrent associative memory models, and multi-
criteria associative memory models are applied to
estimate simulated network flows. The performance
of the AM models is evaluated. Section V summarizes
the overall traffic analysis studies and their findings.

Ii. LITERATURE REVIEW

The increasing interest for the seismic risk
analysis (SRA) has stimulated both public and
private sectors in developing SRA procedures.
Public agencies are major contributors for the
development of the SRA procedures. They include:
(1) the California Department of Transportation’s
(Caltrans’) SRA procedures (Gilbert, 1993}, (2) the
Applied Technology Council (ATC) procedure spon-
sored by the Federal Highway Administration,
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(38) the Illinois Department of Transportation
(IDOT) procedure, and (4) the Washington State
Department of Transportation (WSDOT) procedure
(Babaei and Hawkins, 1991).

Earthquake engineers and planners have also
developed the SRA procedures. Buckle (1991) in-
troduced a procedure emphasizing bridge importance
criteria and soil amplification effects. Kim et al.
(1992) and Kim (1993) provided a SRA procedure
using geographic information systems (GIS). Other
SRA procedures include the procedure considering
uncertainties and transportation networks (Cherng
and Wen, 1992), the modified versions of Caltrans’
multi-attribute procedure (Kiremidjian, 1992),
the procedure applied to the Memphis and Shelby
County area (Pezeshk et al., 1993), and the
general bridge prioritization procedure incorporated
with a computer-based GIS system and an expert
system named ESCOB (Basoz and Kiremidjian,
1994). Kim et al. (1997) introduced a compre-
hensive SRA procedure for roadway transportation
systems.

The importance of transportation systems for
SRA procedures has been addressed by Hendrickson
et al. (1980), Oppenheim (1981), Oppenheim and
Anderson (1981), and Carey and Hendrickson
(1984). Yamada et al. (1992), Wakabayashi and
Kameda (1992), and Basoz and Kiremidjian (1994)
provided the procedures incorporated with relevant
SRA issues such as the post-earthquake recovery
of the transportation network, the change of
post-earthquake travel demand, or the importance
of accessibility to certain zones. The impacts of
the 1989 Loma Prieta earthquake and the 1994
Northridge earthquake have been studied by
many researchers. However, the SRA procedures
are based on simplified assumptions due to lack
of consideration to the system-wide traffic impacts
of seismic risks. Consequently. the mainstream
SRA procedures apply average daily traffic
(ADT) volumes to determine the importance of

a bridge.

19

. TRANSPORTATION NETWORK
ANALYSIS PROCEDURE

The TNA procedure is developed based on the
assumption that both observed post-earthquake
link volumes and an accurate O-D trip matrix
are not available. The procedure comprises of five
modules: (1) initialization of the procedure
including data acquisition and modification, (2)
identification of system states with respect to
scenario earthquakes, (3) simulation of network
equilibrium flows with respect to link-failure system
states, (4) application of artificial intelligence
models for estimating network flows of the remaining
link-failure system states, and (5) aggregation
and interpretation of results. The framework of
the TNA procedure is shown in {Figure 1).

1. Initialization Module

The initialization module develops reliable
transportation system data sets containing free-flow
link travel times, link capacities, an origin-
destination (O-D) trip matrix, and baseline link
volumes. Free-flow link travel times and link
capacities are either obtained from MPOs, or
computed using link distance and speed information.
An O-D trip matrix is established through either
transportation models or travel demand surveys.
The baseline link volumes are determined by
extracting seasonal and/or trend variations from
observed link volumes using a link volume adjustment
method. An O-D trip estimation method is
applied to estimate an O-D trip matrix from the

baseline link volumes.

2. Identification Module

The identification module determines an adequate
number of post-earthquake system states given
scenario earthquakes. This module is carried out
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(Figure 1) Transportation Network Analysis Procedure

in four parts. The first part selects the total number
of scenarios by either researcher’s decisions or
seismic hazard models. The second part computes
the total number of link-failure system states for
each scenario. The third part identifies the number
of training and test system states. The states are
randomly selected from the total system states.
The fourth part defines network configurations
for the training and test system states.

3. Simulation Module

The simulation module generates equilibrium
traffic flows with respect to the training and test
system states. There is an extensive literature on
transportation network equilibrium models and
solution algorithms. This research employs the
static network equilibrium model to simulate traffic
flows given network configurations of different
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link-failure system states. The formulation of the

model is:
Minimize Za{ fo mta( w)dw] (D
Subject to
Vi= Zs:ui for all links a (2)

r—
20 — 2i=Demand "*
ain Outlr) ain In(r)

for all origin-destination pairs (r,s) (3)

Vo= 0 for all links a, and destinations s (4)

where
w * the variable of integration
Va : the total flow on link a

talw) : the link travel cost function for link a

S

U, ¢ the total flow on link a bound for desti~

nation s

Out(r) : the set of link flows outbound from node
r, and

In(r) : the set of link flows inbound to node r.

This is a nonlinear minimization problem with
a convex objective function subject to two sets of
linear constraints and a set of non-negativity
conditions (Eash et al., 1979). The Frank-Wolfe
algorithm is applied as the solution algorithm.
The BPR link travel cost function is used to
describe link travel costs as a function of link flows.

4. Artificial Intelligence Module

The artificial intelligence (AI) module involves
the application of Al models to a rapid and
inexpensive estimation of post-earthquake network

flows for the remaining system states. There are
a variety of Al models.” The usefulness of the Al
models has been demonstrated by many researchers
since 1980s. This research applies the associative
memory (AM) models to network flow estimation.
The AM models are highly simplified models of
human memory derived from the AI field. The
AM models are applied in cases in which there
seems to be a strong association between a set of
vectors (stimulus vectors) and a different set of
vectors (response vectors). An ideal AM model is
shown in {Figure 2).

stimulus response
s
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k2 . Associative k2
) Memory
§ r
ki k j
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r
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s r
k P k q

{Figure 2) An Ideal Associative Memory Model

This research applies eleven heteroassociative
memory models to the network flow estimation
problem: (1) a simple associative memory (SAM)
model; (2) a recurrent associative memory (RAM)
model: and (3) nine multicriteria associative memory
(MAM) models. They are selected because: (1)
they are computationally simple: (2) they provide
rapid and reliable estimates of response vectors
through the learning process for highly non-linear
systems: (3) the usefulness of the models has
been demonstrated by many applications: and (4)
the AM models are relatively new approaches to
transportation. The AM models are used to map
the network configurations of link-failure system

1) There are three main paradigms adopted in the field of artificial intelligence: (1) the symbolic paradigm including expert systems
and fuzzy systems, (2) the subsymbolic paradigm including neural computing systems, and (3) a mixture of the symbolic and

subsymbolic systems (Kasabov, 1996).
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states (stimulus vectors) to their associated link
traffic flows (response vectors).

The network configurations and flows are
divided into two groups: training system states
and test system states. Most of the stimulus and
response vectors are used as training system states
to compute different AM matrices. The remaining
pairs are used to evaluate the performance of the
AM matrices. The AM matrix providing the closest
estimates of test case network flows is applied to
predict network flows for the remaining states. The
AM models are described by Moore et al. (1993).

5. Result Interpretation Module

The result interpretation module summarizes
the results of different AM models. The perfor-
mance of the AM models is evaluated by Root
Mean Square Errors (RMSEs), scatter plots, and
correlation coefficients between traffic flows simu-
lated by the network equilibrium model and flow
estimates provided by the AM models.

V. ANALYSIS AND RESULTS

1. A Simple Synthetic Network

This section defines a simple synthetic transpor-
tation network to examine the applicability of the
TNA procedure. The synthetic network includes
seven zones and twenty-four directed links. The
network is shown in (Figure 3). Three synthetic
input data sets of an O-D trip matrix, link
capacities, and free-flow link travel times are
randomly generated.

A subset of link failure system states is randomly
selected to represent all possible link-failure system
states. Network configurations of the link failures
are represented discretely. Collapsed links are
coded as "2, and undamaged links are coded as
“1.” The static network equilibrium model is

{Figure 3) Synthetic Network and Zones

applied to simulate link flows. The static model
takes less than a second to simulate traffic flows.

The total number of possible link-failure system
states can be computed combinatoricaily. Combi-
nations are defined using the number of subsets
of size r that can be constructed from the population
of n objects with no concern for the arrangement
or order of the r objects. The combinatorial formula is

nCr= —nl__ (5)

r(n—n!

where n is the total objects and r is the
number of subsets to be taken. The total number
of possible post-earthquake system states is 24Ci
+ uCe + uCs + 24Cs + = + 2uaCo3 + 2Cu =
24+276 + 2,024 + 10,626 + - + 24 + 1 =
16,777,215. This total number includes cases
corresponding to one-link, -+ 24-link closures.
This research is conducted to two classes: single
and double link failures. The simulation of single
link failures has a total of twenty-four system
states. The total possible number of double link
failures is 276. This number is obtained from the
combinatorial formula for selecting any two links
out of 24 links:

C = Al _ Al _ 24x23x2!
812 21(24 —2)! 21 x 221 2% 22!
_24%x23 _
=TT =2 )
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(Table 1> RMSEs of SAM. RAM. and MAM (Single Link Failure)

MAM(a) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SAM RAM
SS Training | 93.32 8294 7257 62.2 51.84 4147 31.1 20.73 10.37 7.95E-13 4.95E-13
1 Test 98.09 98.1 98.1 98.11 9811 98.11 98.11 98.11 98.11 98.112 98.227
SS Training | 92.86 8254 7222 61.9 5158 4127 3095 2063 10.32 7.23E-13 7.08E-13
2 Test 110 110 110 110.1 1101 1101 1101 110.1  110.1  110.07 110.33
SS Training | 92.88 8255 72.23 6191 5159 4127 3095 2064 1032 7.76E-13 7.94E-13
3 Test 109.8  109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.79 109.91
SS Training | 93.19 8282 7247 62.12 5176 4141 31.06 20.71 1035 7.46E-13 4.01E-13
4 Test 101.6 101.7 101.7 101.7 101.7 101.7 1017 101.7 101.7 101.67 101.84
SS Training | 93.45 83.06 7268 6229 5191 4153 31.15 20.76 10.38 6.25E-13 3.27E-13
5 Test 94.23 9421 9421 9421 942 942 942 942 942 94.201 94.212
SS Training |90.84 80.74 70.64 60.55 5046 40.37 30.28 20.18 10.09 7.50E-13 3.97E-13
6 Test 152.1  152.1 1621 1621 1521 1521 1521 1521 152.1 152.12 152.2
S8 Training | 93.19 82.82 7247 6212 5176 4141 31.06 20.71 10.35 6.19E-13 3.85E-13
7 Test 1016 1016 1016 1016 101.7 101.7 1017 101.7 101.7 101.66 101.89
SS Training | 94.56 84.04 73.54 63.03 5253 42.02 3152 21.01 1051 7.52E-13 3.63E-13
8 Test 51.97 5199 51.99 52 52 52 52.01 52.01 5201 52.008 52.224
SS Training | 93.57 83.17 7277 62.37 5198 4158 31.19 2079 104 547E-13 4.29E-13
9 Test 90.7 90.67 -90.66 90.65 90.65 90.65 90.65 90.65 90.65 90.646 90.618
SS Training | 91.98 8175 7153 61.31 51.09 40.87 30.66 2044 10.22 4.82E-13 5.80E-13
10 Test 130.1 130.2 130.2 130.2 130.2 130.2 130.2 130.2 130.2 130.23 130.58
SS Training | 92.17 8192 7168 61.44 512 4096 30.72 2048 10.24 8.63E-13 7.51E-13
1 Test 126.1  126.1 126.1 1261 1261 1261 1261 1261 126.1 126.09 126.17
3S Training | 92.91 8258 7225 6193 5161 4129 3097 2064 10.32 7.66E-13 9.11E-13
12 Test 109 109 109 109 109 109 109 109 109 108.96 109
SS Training | 93.04 827 7236 6202 5168 4135 31.01 20.67 10.34 6.45E-13 b5.58E~13
13 Test 1054 1054 1055 1055 1055 1055 105.5 1055 1055 105.49 105.77
S8 Training | 92.27 82.01 71.76 61.51 5125 41 30,75 205 10.25  6.50E-13 4.93E-13
14 Test 124.2 1241 1241 124 124 124 124 124 124 124.01 123.62
SS Training | 94.85 84.3 73.76 63.22 5269 4215 31.61 21.07 10.54 5.66E-13 5.21E-13
15 Test 32.9 32,99 33.02 33.04 33.05 33.05 33.06 3306 33.06 33.067 33.603
SS Training | 94.56 84.04 7353 63.03 5252 4202 3151 2101 10.51 6.64E-13 4.36E-13
16 Test 52.14 52.16 5217 5218 5218 5219 52.19 52.19 5219 52.192 52.439
3SS Training | 94.12 83.65 73.19 6274 5228 41.82 31.37 2091 1046 7.85E-13 6.67E-13
17 Test 71.69 7183 71.88 719 7192 7193 7194 7194 7195 7195 72.575
SS Training | 93.83 834 7297 6255 5212 41.7 31.27 20.85 1042 5.75E-13 5.92E-13
18 Test 8241 82.36 8235 8234 8234 8234 8233 8233 8233 8233 82.266
S8 Training | 93.69 83.27 72.86 6245 5204 41.64 31.23 2082 1041 6.188-13 4.15E-13
18 Test 86.82 86.85 86.86 86.86 86.87 86.87 86.87 86.87 86.87 86.872 87.055
SS Training | 90.31 80.27 70.23 60.2 50.17 40.13 30.1 20.07 10.03 6.17E-13 3.75E-13
20 Test 161.1 161.1 161.1 161.1 161.1 161.1 161.1 1612 161.2 161.15 161.27
SS Training | 93.99 83.53 73.09 62.65 5221 41.77 31.32 20.88 10.44 B8.64E-13 3.82E-13
21 Test 76.96 76.91 769 7689 76.89 76.89 76.89 76.89 76.89 76.885 76.835
SSs Training | 91.85 81.63 71.42 61.22 51.02 4081 31.61 2041 10.2 6.83E-13 5.89E-13
22 Test 133.2 133.1 1331 133.1 133.1 133.1 133.1 133.1 133.1 133.08 132.96
SS Training | 92.73 8242 72.12 61.81 5151 4121 3091 20.6 10.3 1.00E-12 4.96E-13
23 Test 113.6 1134 1134 1134 1134 1134 1134 1134 1134 113.35 112.98
S8 Training | 90.53 80.46 70.41 60.35 50.29 40.23 30.17 20.12 10.06 6.96E-13 8.83E-13
24 Test 157.5 1575 1575 1575 1575 1575 1575 1575 157.5 15745 157.41
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2. Application of Associative Memory Models

The objective is to generate relevant flow estimates
without using the static model. Traffic flows are
estimated based on the association between the
network configurations of link failure system
states and simulated link flows. Eleven AM models
are computed and used to map the network
configurations to the associated link flows. Three
AM scenarios are considered based on the flow
simulation scenarios: single-link failures, double~
link failures, and the mixture of single-link and
double-link failures.

1) Scenario A: Single-Link Failures

The total number of twenty—four system states
is randomly ordered, Three AM evaluations are
conducted to test the performance of AM models.
The MAM models have an additional parameter a.
The estimation performance of the MAM procedure
is varied due to changing the ¢ parameter.
Since the « parameter takes values on the
interval (0.1, 0.9]). at least nine different MAM
procedures can be considered. The first exercise
uses each of the twenty—four system states as the
test system state in rotation. The other twenty-
three system states are used to create different
memory matrices. {Table 1) presents the RMSE
results of SAM, RAM, and MAM in estimates in
the case of single-link failures. The RMSE
results do not significantly vary in the case of
test states. The RMSE results show that test
state 15 provides the lowest RMSE. Test state 20
provides the highest test case RMSE, representing
the worst flow estimate. (Figures 4 to 6) show
the scatter plots and correlation coefficients for
test state 15 using SAM, RAM, and MAM (e=0.9).
The computation time spent for each estimation
is less than a second.

The second evaluation of AM models to the

single-link failure system states varies the number

of the test system states as well as the training
system states. One of the advantageous characte-
ristics of AM techniques is that AM models can
estimate a group of test system states simul-
taneously without significant costs. However, there
is a tradeoff between the number of simultaneously
estimated test system states and the performance
of AM models. There is no rule in determining
the optimal number of test system states that
can be estimated simultaneously without conside-
rably losing the estimation power. This second
evaluation investigates that relationship between
the number of simultaneous test states and the
performance of the AM models. The evaluation
begins with the case of test system state 15,
providing the lowest test state RMSE. (Table 2)
shows the RMSE results of SAM, RAM, and
MAM in estimates in the case of varying test
states of single-link failures.
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(Figure 4) Estimated vs. Simulated Traffic Flow
(SAM, TEST, r=0.9702638, Single Link Failure)
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The SAM and RAM models
perfectly replicate the training flows, but this is

are able to

expected. The test results are somewhat disa-
ppointing. The AM models do not produce close
estimates of test flows in most single-link failures.
The results indicate that a training sample consisting
of twenty-three system states is not sufficient to
train the AM models.
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(Figure 6) Estimated vs. Simulated Traffic Flow
(MAM, TEST, r=0.9702643, Single Link Failure)
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2) Scenario B : Double-Link Failures

Fifty system states are used to be representative
all the 276 system states of double link failures.
The evaluation examines the performance of AM
models in the case of varying training and test states.
The number of test states increases as the number
of training states decreases. The RMSE results of
the eleven AM models are shown in (Table 3).
RAM scatter plots and correlation coefficients are
shown in {Figure 7). The computation time spent
for each estimation is less than a second.

Results demonstrate that the AM models perform
reliably with respect to the test states. The best
MAM model replicates simulated flows better than
SAM and RAM models in most test cases. The
best MAM model provides the reliable estimates
of traffic flows up to a group of fifteen test states
when the remaining system states are used to

compute AM matrices. The estimation performance

(Table 2) RMSEs of SAM, RAM, and MAM (Single Link Failure:varying test states)

MAM(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SAM

RAM

CASE
1

CASE
2

CASE
3

CASE
4

CASE
5

CASE
6

CASE
7

CASE
8

CASE
9

CASE
10

CASE
11

CASE
12

Training:23
Test: 1
Training:22
Test: 2
Training:21
Test: 3
Training: 20
Test: 4
Training:19
Test: 5
Training:18
Test: 6
Training:17
Test: 7
Training: 16
Test: 8
Training:15
Test: 9
Training: 14
Test: 10
Training:13
Test: 11
Training:12
Test: 12

94.85
32.9
94.62
83.49
93.33
104.2
94.44
98.11
91.3
1135
91.98
110.2
92.88
107.7
94.24
105.1
96.37
102.1
92.72
109.1
91.66
110
91.63
109.9

84.3
32.99
84.1
83.42
82.95
104.1
83.94
98.04
81.14
113.4
81.75
110.2
82.55
107.6
83.75
105.1
85.65
102
82.39
109.1
81.45
109.9
81.41
109.9

73.76
33.02
73.58
83.4
72.58
104.1
73.44
98.02
71
113.4
71.53
110.2
72.22
107.6
73.28
105.1
74.94
102
72.09
109.1
71.26
109.9
71.23
109.9

63.22
33.04
63.07
83.38
62.21
104.1
62.95
98.01
60.85
113.4
61.31
110.2
61.91
107.6
62.81
105.1
64.23
102.1
61.79
109.1
61.08
109.9
61.06
109.9

52.69
33.05
52.56
83.38
51.84
104.1
52.46
98
50.71
1134
51.09
110.2
51.59
107.6
52.34
105.1
53.53
102.1
51.49
109.1
50.9
109.9
50.88
109.8

42.15
33.05
42.05
83.37
41.47
104.1
41.97
98
40.57
113.4
40.87
110.2
41.27
107.6
41.87
105.1
42.82
102.1
41.19
109.1
40.72
109.9
40.7
109.8

31.61
33.06
31.54
83.37
31.11
104.1
31.48
97.99
30.43
113.4
30.65
110.2
30.95
107.6
31.4

105.1
32.12
102.1
30.89
109.1
30.54
109.9
30.53
109.8

21.07
33.06
21.02
83.37
20.74
104.1
20.98
97.99
20.28
1134
20.44
110.2
20.64
107.6
20.94
105.1
21.41
102.1
20.6

109.1
20.36
109.9
20.35
109.8

10.54
33.06
10.51
83.37
10.37
104.1
10.49
97.99
10.14
113.4
10.22
110.2
10.32
107.6
10.47
105.1
10.71
102.1
10.3

109.1
10.18
109.9
10.18
109.8

5.66E-13
33.067
6.25E-13
83.365
4.40E-13
104.05
5.49E-13
97.989
4.78E-13
113.41
6.42E-13
110.15
5.11E-13
107.59
4.80E-13
105.09
4.34E-13
102.05
3.13E-13
109.06
5.76E-13
109.9
3.62E-13
109.84

5.21E-13
33.603
1.01E-13
83.209
5.70E-13
103.91
4.11E-13
97.862
4.36E-13
113.35
5.62E-13
110.13
6.05E-13
107.56
3.58E-13
105.14
6.27TE+13
102.13
5.40E-13
109.12
2.94E-13
109.87
3.68E-13
109.84
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(Table 3) RMSEs of SAM, RAM, and MAM in Double Link Failures

MAM(e) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SAM RAM
CASE 1 |Training: 49]101.7 764 603 49.12 41.09 3531 31.29 2871 27.32 26906  4.232
Test: 1 81.99 61.99 5059 4347 38.89 3598 34.21 3326 3288 32912  20.317
CASE 2 |Training: 48 |102.1 76.89 60.76 4953 4143 3556 3145 28.77 2731 26867  4.00E-10
Test: 2 103.1 8285 69.58 59.8¢ 5227 4629 41.71 3858 37.06 37.381 124.42
CASE 3 |Training: 47 |102.8 7758 61.38 50.05 41.83 3585 31.63 2887 27.35 26.83 4.08E-12
Test: 3 101 8126 67.86 57.87 5016 4425 39.99 3742 366 37.599 92954
CASE 4 |Training: 46 [103.5 7816 61.86 5045 4215 36.09 31.8 2897 274 26918  7.32E-13
Test: 4 100.7 8173 68.67 58.84 5114 4511 4056 37.54 36.19 36.705  85.085
CASE 5 | Training: 45|104.4 78.9 6245 50.9 4248 363 31.89 2897 27.34 26.83 9.20E-13
Test: 5 9374 1765 6458 5565 48.76 4353 39.84 37.71 37.24 38515  87.247
CASE 6 |Training: 44 105  79.47 62.97 51.36 4284 3654 31.98 289 2715 26585  6.90E-13
Test: 6 100.5 83.31 71.11 61.64 5406 4814 4397 41.85 4211 44929  89.612
CASE 7 |Training: 431058 80.24 6363 51.9 4328 36.87 3222 29.05 27.23 26638  6.46E-13
Test: 7 100.3 834 71.22 61.7 54.06 48.05 4379 41.62 41.94 45061 83.476
CASE 8 |Training: 42 |106.6 80.99 643 5248 4374 37.22 3244 29.15 2721 26.577 1.61E-11
Test: 8 1014 8383 71.3 6158 538  47.7 43.38 41.19 4162 45118  286.71
CASE 9 |Training: 41 {107.1 8142 64.71 52.86 44.08 3746 3254 29.07 2696 26228  5.03E-1l
Test: 9 105.8 90.63 7943 7028 6249 5589 50.8 4797 4861 54.054 1154.6
CASE 10{Training: 40 [108 822 6538 5341 4451 3776 32.69 29.07 26.84 26.068 1.34E-09
Test: 10 1052 90.44 79.48 7048 6284 5647 51.74 49.39 50.5 56.123 18000
CASE 11|Training: 39 [108.7 83.12 66.24 54.15 4509 3819 3298 29.23 2691 26094  4.37E-11
Test: 11 1064 90.55 7895 69.61 6181 5541 ©50.69 4839 496 55.531 10014
CASE 12|Training: 38 [109.7 84.03 67.01 54.76 4556 3852 33.19 29.3¢ 2694 26098  4.98E-13
Test: 12 1052 89.37 77.78 6849 60.76 5442 4973 47.37 4839 53.928  79.422
CASE 13|Training: 37 {110 8453 6762 5542 462  39.09 3364 2964 271 26185  6.40E-13
Test: 13 1102 94.77 83.07 733 6482 5751 51.73 4835 4875 54465  79.525
CASE 14|Training: 36 |111.2 8553 6846 56.11 46.75 39.5 339 29.74 27.06 26.075  9.13E-13
Test: 14 109 9367 8211 725 6416 56.97 51.28 4796 4843 54308  81.604
CASE 15|Training: 35 |111.6 86.48 69.56 57.16 47.64 40.15 34.27 29.85 2696 25897  4.50E-13
Test: 15 1126 96.28 83.82 7346 6454 5692 50.95 475 4793 53.751 79.293
CASE 16| Training: 34 |112.1 87.32 7048 58 4831 4059 3442 2968 2646 25219  3.76E-13
Test: 16 1152 9826 853 7459 655 57.92 52.18 49.14 50.09 56.509  81.635
CASE 17|Training: 33 |112.5 87.7 70.71 58.05 48.14 40.17 33.73 28.68 2519 23.807 3.71E-13
Test: 17 116.6 100.2 87.54 77.04 6811 60.62 549 51.7 5229 58326 874l
CASE 18|Training: 32 |113.5 88.45 71.26 5842 4837 40.29 3375 286 24.96 23444 4.17E-13
Test: 18 116.1 99.96 87.57 77.35 6868 61.42 5579 5249 5292 60216  83.835
CASE 19|Training: 31|114.6 89.45 72.1 59.13 4897 40.8 3419 2899 2534 1614 3346.8
Test: 19 116.2 100.5 88.53 7877 7047 63.38 57.61 53.67 52.81 2.83E+16 2.96E+17
CASE 20|Training: 30|113.8 89.49 72.72 60.11 50.09 41.86 3502 2945 25.38 144.34 147.46
Test: 20 123 107.3 9452 83.54 73.82 6526 5815 53.29 52.28 6.82E+16 3.94E+15
CASE 21|Training: 29|114.7 90.5 73.67 60.89 50.64 4212 34.94 29 24.56 411.31 5.66E-13
Test: 21 122.8 107.1 9442 83.51 73.88 6549 58.63 54.1 53.49 1.69E+17 141.78
CASE 22|Training: 28 |115.4 91.18 74.41 61.69 51.46 42.87 3548 29.13 24.06 21.618 4.01E-13
Test: 22 123.8 109 96.86 86.17 7651 67.85 60.61 5589 5598 65.848 90.163
CASE 23|Training: 27113 88.72 71.95 59.4 4949 41.35 3449 2872 2419 22014 3.53E-13
Test: 23 132 1201 1109 1034 96.85 91.23 86.6 83.37 82.73 88.196 103.18
CASE 24|Training: 26 |112.7 88.34 71.46 58.83 48.87 40.71 33.85 27.98 23.11 628.86 4.83E-13
Test: 24 133.2 1215 112.6 1052 98.84 93.17 8815 84.03 8202 9.02E+16 149.87
CASE 25|Training: 25 |114.1 89.63 72.62 59.83 49.68 41.32 34.18 27.93 224 544.14 3.42E-13
Test: 25 1335 122 1131 1056 98.98 93.06 87.81 8367 8264 4.21E+16 170.91
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(Figure 7) Estimated vs. Simulated Traffic Flow
(RAM, TEST, r=0.9934711, Double Link Failure)

of AM models is not sensitive to the order of
training or test system states.

Fifty system states seem to be sufficient for
the learning process of AM models. The RMSE
results from the two double-link failures are usually
lower than those of single-link failures. This may
be because more system states are trained in the
case of the double-link failure evaluations. Further,
each link has a higher chance of being selected as
link failures. The RMSE results of test states tend
to decrease when the alpha of MAM increases.

3) Scenario C : The Mixture of Singie-Link and Double-
Link Failures

This scenario examines the performance of AM
models from mixed system states of single-link
and double-link failures. This scenario includes
seventy-four system states. The seventy-four data
sets are combined and re-arranged. The RMSE
results of the eleven AM models in estimates in
the case of the combined link failures are shown
in (Table 4). SAM scatter plots and correlation
coefficients between simulated and estimated traffic
flows in test cases are shown in (Figure 8).

This mixed link failure evaluation provides the
lowest RMSE results among the three link failure
scenarios. This may be due to the increased
number of system states available for training.
The estimation performance of SAM., RAM, and
MAM (@ =0.9) is very close. The RMSE results
do not vary significantly as the number of training

system states decreases.
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(Figure 8) Estimated vs. Simulated Traffic Flow
{(SAM, TEST, r=0.992686, Single & Double Link Failure)

V. Conclusions

The AM approach is based on the heuristic archi-
tecture, producing heuristic solutions to the network
equilibrium models. The major point of this exercise
is not to predict link flows on an individual link,
but for the entire system. The objective is to
generate a cheap, credible prediction of system-
wide traffic flow changes with respect to given
alternative network configurations related to earth-
quake scenarios. The seven—zone synthetic network
is simple, but captures several elements of a
highway system. Empirical link volumes are not
available in the synthetic network. Thus, this exercise
measures the performance of AM models by comparing
flow estimates provided by the AM approach with
noise-free numerical solutions to the network
equilibrium model.

In most cases, the procedure performs very well
in evaluation. Qutputs from AM models provide
good estimates of individual link flows. The results
from different link failure scenarios demonstrate
the applicability of AM models to seismic risk
analysis. The SAM, RAM, and MAM models provide
good overall estimates of traffic flows, if the number
of training system states is sufficient (greater
than fifty). There is not much difference of the
performance among eleven AM models. The MAM
models demonstrate an advantage with respect to
the test flows due to MAM's built-in penalty function
for overfitting, containing the less sensitivity to
error terms than SAM and RAM models. Results
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(Table 4> RMSEs of SAM, RAM, and MAM (Single and Double Link Failure)

MAM(e) | 0.1 02 03 04 0.5 06 0.7 0.8 0.9 SAM RAM
CASE 1 Training: 73 | 87.94 64.56 50.56 41.45 3538 31.38 28.84 27.37 2665 26445 15.031
Test: 1 1185 90.52 70.48 5543 4392 3521 2892 2489 2295 22761 23.842
CASE 2 Training: 72| 88.34 65.03 50.98 41.78 3561 315 2889 27.36 2661 26403 13.9%4
Test: 2 108.2 81.49 62.68 49.08 3943 33.1 2968 2865 29.33 31.043 27.59
CASE 3 Training: 71| 88.5 65.34 51.28 42.03 3577 316 2892 27.35 26.57 26.358 12.147
Test: 3 114.8 87.77 69.06 55.6 4593 3926 35.07 3291 3231 32804 38922
CASE 4 Training: 70 | 88.92 65.71 51.59 4228 3598 3175 29.04 27.44 26.65 26.426 12.021
Test: 4 106 8158 64.64 5243 4362 3749 3356 3145 30.74 31.043 36.668
CASE 5 Training: 69 | 89.38 66.12 51.95 4256 36.19 319 29.14 275 26.69 26464 11.829
Test: 5 1015 78.92 6292 5128 4283 3695 3322 3127 30.72 31.156 36.024
CASE 6 Training: 68 | 89.56 66.43 52.27 42.82 3635 31.94 29.07 27.35 2649 26246 12.825
Test: 6 1052 8291 67.01 5531 4681 4098 3745 3586 3577 36.748 35936
CASE 7 Training: 67 | 89.98 66.89 52.68 43.16 36.6 32.11 29.16 27.39 2649 26242 13.029
Test: 7 1042 8181 6596 5431 4585 40.06 36.59 3509 3511 36214 34.299
CASE 8 Training: 66 | 90.57 674 53.06 4342 3675 32.16 29.14 27.32 2639 26.131 12.763
Test: 8 1009 78.76 63.38 52.27 44.38 39.17 3624 352 3556 36.892 35.83
CASE 9 Training: 65 | 91.07 67.8 534 437 36.97 3233 29.26 2739 2645 26174 12457
Test: 9 9759 76.6 61.97 51.34 4373 38.62 35.67 3453 3481 36.085 34.518
CASE 10 Training: 64 | 91.64 68.28 53.76 43.95 37.12 324 2926 27.35 2637 26.09 12.027
Test: 10 96.03 75.23 60.96 50.74 4354 3879 36.13 3518 3553 36.784 36.576
CASE 11 Training: 63| 92.19 68.8 54.19 44.28 37.37 3257 29.37 2741 2641 26128 11.882
Test: 11 95.33 74.46 60.17 49.95 42.75 38.01 3538 3446 34.85 36.148 35.311
CASE 12 Training: 62 | 92.31 69.14 54.59 44.65 3764 32.72 294 27.34 2628 25969 12318
Test: 12 98.39 177.08 62.33 51.65 44 3887 3594 34.87 3525 36.677 3583
CASE 13 Training: 61| 92.58 6949 54.89 44.85 37.71 3265 29.2 27.05 2593 25601 12.691
Test: 13 100.3 78.83 64.04 53.33 4565 405 37.54 3644 36.8 38.216  179.57
CASE 14 Training: 60 | 93.14 69.95 5523 45.07 37.83 3269 29.17 2696 25.8 25.469 12.378
Test: 14 98.99 77.96 63.53 53.15 4574 40.81 37.99 3696 37.32 38.679 45.558
CASE 15 Training: 59| 93.71 70.46 55.67 4542 38.04 3272 29.02 2666 254 25.028 10.683
Test: 15 9759 7725 63.12 52.84 4554 40.83 38.47 38.14 3941 41.793 50.486
CASE 16 Training: 58 | 94.05 70.84 56.05 45.75 38.31 3292 29.13 26.68 25.36 24.966 152.42
Test: 16 98.54 178.52 64.46 54.1 4659 416 3897 3846 3971 42.269 169.02
CASE 17 Training: 57 | 94.49 71.29 56.46 46.11 38.61 33.15 29.3 26.8 2545  25.045 306.02
Test: 17 08.53 788 64.84 5448 46.88 41.74 3891 382 39.26 41.665 319
CASE 18 Training: 56 | 94.76 71.66 56.8 46.36 38.75 33.19 29.25 2668 2528 24.856 43.409
Test: 18 100.6 80.72 66.62 56.11 4834 4296 3982 3876 3946 41555 67.544
CASE 19 Training: 55 | 94.87 71.84 57.01 46.59 3897 33.38 29.39 2677 2533 24.889 7.1233
Test: 19 102.5 83.39 69.75 59.37 5143 4558 4169 39.74 3961 41.144 2.85E+08
CASE 20 Training: 54 | 95.07 72.18 57.41 47 39.34 3368 2961 26.9 25.4 24.943 28.618
Test: 20 103.7 84.95 71.27 60.7 5246 46.26 42.04 39.8 3949 40.944 17.21E+15
from the MAM madels indicate that the best test system states. The addition of more training

value of @ is in the neighborhood of 0.9.

The “good” estimates of AM models demonstrate
that the post-earthquake system states derived
from different link failure scenarios can be combi-
ned and used to train AM models. The performance
of AM models mostly depends on the number of

training system states as well as the number of

states in the learning process tends to increase
the performance of AM models. The comparison
between the static network equilibrium model
and AM models does not show the substantial
evidence of benefits using AM models in terms of
computation time savings. This is because we use
the simple synthetic transportation network with
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only seven zones and twenty-four directed links.
Equilibrium traffic flows are computed within a
second. However, the static network equilibrium
model may require enormous computation times if
we apply the model to an empirical transportation
network with many zones and links.

Further, the static model requires linearly increasing
computation times in case of a large number of
traffic flow simulation. Suppose that we want to
obtain traffic flows for 1,000 post-earthquake system
states. Suppose that the best static model takes
one minute to simulate traffic flows for each system
state. This results in 1,000 minutes for all post-
earthquake system states. However, AM models
require only sufficient training information to
understand the pair association between network
configurations and their traffic flows. Suppose
that the network configurations and traffic flows
for the first 100 system states are used to train
eleven AM matrices (SAM, RAM, and nine MAMs).
Each training episode requires at most one minute
to compute an AM matrix. The best performing
AM matrix is used to estimate traffic flows of the
remaining 900 system states.

AM models can estimate traffic flows for a
group of system states simultaneously. Thus, the
900 system states are divided into nine groups.
Each group of 100 system states can be estimated
simultaneously. This estimation takes around one
minute. As a result, the AM models require 100
minutes for the first 100 applications of the conven-
tional network equilibrium model, 11 minutes for
determining the best AM from among the eleven
candidates, and 9 minutes for the remaining 900
system states to be estimated. The total computation
time for the AM approach is 120 minutes. This is
an enormous time saving.

The results of AM models with varying training
and testing system states indicate that the AM
models are able to estimate a group of test system
states simultaneously without significant loss of
the estimation power, if the number of training
system states is sufficiently large. Conventional
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transportation network models may require huge
computational times to generate exact solutions
for a large-scale transportation. The cheap, heuristic
solutions of the AM models can be used as good
starting points for the conventional models. This
is conducted in two steps. AM solutions are adjusted
to feasible solutions, satisfying all the network flow
constraints. After a feasible solution is obtained, the
conventional network equilibrium models are applied
to improve the feasible solution to the exact solution.
In an empirical context, this is second best.
Both sets of flows are predictions. The static network
equilibrium model is an incomplete representation
of the process that simulates link volumes. Empirical
studies indicate that there are significant differences
between the traffic flows simulated by conventional
network equilibrium models and observed link
volumes. Further studies are suggested by using
a large-scale transportation network and empirical

link volumes.
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