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Modeling the Water-Block Interaction with Discontinuous Deformation
Analysis Method

Yong-Il Kim

ABSTRACT A powerful numerical method that can be used for that purpose is the Discontinuous Deformation
Analysis (DDA) method developed by Shi in 1988. In this method, rock masses are treated as systems of finite and
deformable blocks. Large rock mass deformations and block movements are allowed. Although various extensions of
the DDA method have been proposed in the literature, the method is not capable of modeling water-block interaction
that is needed when modeling surface or underground excavation in fractured rock. This paper presents a new extension
to the DDA method. The extension consists of hydro-mechanical coupling between rock blocks and water flow in
fractures. A example of application of the DDA method with the new extension is presented. The results of the present
study indicate that fracture flow could have a destabilizing effect on the tunnel stability.
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1. Introduction of displacements and strain measurement made at a
sufficient number of points. Shi(1989) first proposed a
Several numerical methods are used in rock mechanics to new discontinuous deformation analysis(DDA) method
model the response of rock masses to loading and consisting of backward and forward models in this
unloading. These methods include the Finite Element doctoral thesis; computer programs based on the method
Method(FEM), the Boundary Element Method(BEM) were developed and some applications were presented
and the Discrete Element Method(DEM). Compared to in the thesis and various publications(Shi and Goodman
the FEM and BEM methods, the DEM method is 1989; Shi 1990; Ke and Goodman 1994; Yeung and
tailored for structurally controlled stability problems in Klein 1994).
which there are many material discontinuities and Recently, Lin(1995) improved the original DDA
blocks. The DEM method allows for large deformations program by Shi(1989) with four major extensions:
along discontinuities and can reproduce rock block improvement of block contact, calculation of stress
translation and rotation quite well. distributions within blocks using sub-blocks, block
Shi and Goodman(1984) firstly presented the back- D AN e AdANEdr s ddTa
ward model of DDA method which can compute the ¢ @_,;._’%]Tlgg;‘% ':‘% 19%“ e
strains and displacements of blocky systems from a set 93 A4 %89 : 1999 6¥ 18Y
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fracturing and viscoelastic behavior.

Besides the work of Lin(1995), various modifications to
the original DDA formulation have been reported in the
rock mechanics literature,
proceedings of the First International Forum on DDA
(Salami and Banks, 1996) and the 2™ International
Conference on Analysis of Discontinuous Deformation
(Ohnishi, 1997). But, the method still has many

limitations when applied to many specific engineer-

in particular, in the

ing problems. In this thesis, several major limitations of
the DDA method are addressed. This paper presents
new tools that have been developed and implemented
into the original DDA method to solve these limitation.

In rock masses there are generally many dis-
continuities that are preferred pathways for groundwater.
Water flow induces hydrostatic pressure and seepage
forces that affect the state of stress in the rock masses. At
the same time, changes in the state of stress induce rock
mass deformation, which result in changes in the rock
hydraulic properties. This
coupling is critical and cannot be ignored when modeling

mass hydro-mechanical
rock-structure interaction in engineering problems
where water is present.

2. Modeling Blocky Rock Masses
in the DDA Method

In the DDA method, the formation of blocks is very
similar to the definition of a finite element mesh. A
finite element type of problem is solved in which all the
elements are physically isolated blocks bounded by pre-
existing discontinuities. The elements or blocks used by
the DDA method can be of any convex or concave shape
whereas the FEM method uses only elements with
predetermined topologies. When blocks are in contact,
Coulomb's law applies to the contact interfaces and the
simultaneous equilibrium equations are selected and
solved at each loading or time increment. The large
displacements and deformations are the accumulation of
small displacements and deformations at each time step.
Within each time step, the displacements of all points
are small, hence the displacements can be reasonably
represented by first order approximations.

The DDA method has a number of features similar to
the FEM. However, the main attraction of the DDA
method is its capability of reproducing large defor-

mations along discontinuities and large block move-
ment; two features that are restricted with the FEM.

2.1 Block Deformations

By adopting first order displacement approxi-
mations, the DDA method assumes that each block has
constant stresses and strains throughout. The dis-
placements (u, v) at any point (x, y) in a block, i, can be
related in two dimensions to six displacement variables

D=(d, dy dy d; dy de)"=(u, Vo 1y &, € ny)T (1)

where (u,, V,) is the rigid body translation at a specific
point (X,, y,) within the block, r, is the rotation angle of
the block with the rotation center at (x,, y,) and €, €,
and v,, are the normal and shear strains in the block. As
shown by Shi(1988), the complete first order appro-
ximation of block displacements takes the following form

u _—
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This equation enables the calculation of the dis-
placements (u, v) at any point (x, y) within the block (in
particular, at the corners), when the displacements are
given at the center of rotation and when the strains
(constant within the block) are known. In the two-
dimensional formulation of the DDA method, the center
of rotation with coordinates (X,, y,) coincides with the
block centroid.

2.2 Simultaneous Equilibrium Equations

In the DDA method, individual blocks form a system
of blocks through contacts among blocks and dis-
placement constraints on single blocks. Assuming that n
blocks are defined in the block system, Shi(1988)
showed that the simultaneous equilibrium equations can
be written in matrix form as follows

K, K K13 - K D, F,
K, Kp Kp Kyl D, F,
Ky Ky Ky Ki D=9 F, 1C))
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where each coefficient K; is defined by the contacts
between blocks i and j. Since each block i has six
degrees of freedom defined by the components of D, in
equation (1), each K, in equation (4) is itself a 6 X6
sub-matrix. Also, each F, is a 6 X1 sub-matrix that
represents the loading on block i. Equation (4) can also
be expressed in a more compact form as KD=F where
K is a 6n x 6n stiffness matrix and D and F are 6nX
1 displacement and force matrices, respectively. In
total, the number of displacement unknowns is the sum
of the degrees of freedom of all the blocks. It is
noteworthy that the system of equations (4) is similar
in form to that in finite element problems.

The solution to the system of equations (4) is
constrained by a system of inequalities associated with
block kinematics (e.g. no penetration and no tension
between blocks) and Coulomb friction for sliding along
block interfaces. The system of equations (4) is solved
for the displacement variables. The final solution to that
system is obtained as follows. First, the solution is
checked to see how well the constraints are satisfied. If
tension or penetration is found along any contact, the
constraints are adjusted by selecting new locks and
constraining positions and a modified version of K and
F are formed from which a new solution is obtained.
This process is repeated until no tension and no
penetration is found along all of the block contacts.
Hence, the final displacement variables for a given time
step are actually obtained by an iterative process.

The simultaneous equations (4) were derived by Shi
(1988) by minimizing the total potential energy IT of the
block system. The i-th row of equation (4) consists of
six linear equations
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where the d,; are the deformation variables of block i.
The total potential energy IT is the summation over all
the potential energy sources, i.e. individual stresses and
forces. The potential energy of each force or stress and

their derivatives are computed separately. The
derivatives
oI ,
Ja.9d, r,s=1-6 6)
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are the coefficients of the unknowns d,; of the equilibrium
equations (4) for variable d;. All terms of equation (6)
form a 6 X6 sub-matrix, which is the sub-matrix K| in
the global equation (4). Equation (6) implies that matrix
K in equation (4) is symmetric. The derivatives

E)
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are the free terms of equation (5) which are shifted to
the right hand side of equation (4). All these terms form
a 6 X1 sub-matrix, which is added to the sub-matrix F,.

Shi's thesis(1988) covers the details for forming sub-
matrices K;; and F;, for elastic stresses, initial stresses,
point loads, line loads, volume forces, bolting forces,
inertia forces and viscosity forces. Both static and
dynamic analyses can be conducted with the DDA
method. For static analysis, the velocity of each block in
the blocky system at the beginning of each time step is
assumed to be zero. On the other hand, in the case of
dynamic analysis, the velocity of the blocky system in
the current time step is an accumulation of the velocities
in the previous time steps.

3. Modeling Water-Block Interaction

A numerical model was developed to study fluid flow
in deformable naturally fractured rock masses. The
model considers a two-dimensional intact rock mass
dissected by a large number of fractures (joints) with
variable aperture, length, and orientation. Fluid flow,
which occurs when pressure gradients exist, is assumed
to be steady, and laminar or turbulent depending on the
values of the Reynolds number and the relative
roughness of the fracture walls(Louis, 1969). Fluid flow
and the rock deformation are fully coupled. Variations
in fluid pressure and quantity of fluid result in joint
deformation. In turn, joint deformation changes the joint
properties, which therefore changes the fluid pressures
and the resistance to fluid flow.

3.1 Assumptions

The following assumptions were made when im-
plementing the hydro-mechanical coupling in the DDA
program : (a) the fluid is incompressible, (b) the intact
rock is impervious, and fluid flow takes place in the
joint space only; (c) the rock mass contains a finite
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number of joints; (d) the intact rock is linearly elastic;
and (e) joint displacements are small relative to the joint
dimensions.

In the flow model, the fracture space is idealized as a
system of one-dimensional conduits of constant aperture
using the approach proposed by Asgian(1988). The
apparent aperture, b, of a conduit representing a joint
depends on the contact between the joint surfaces. The
joint can be classified as closed or open depending on
the contact state. Consider, for instance, a closed joint
with length, L, and unit width representing the interface
between two contacting prismatic blocks of thickness d,
and d, as shown in Fig. 1(a). Let n be the joint surface
contact porosity (ratio between joint surface open area
and total area) of the closed joint which varies between
0 and 1. The joint can be idealized as a portion of void (n)
with a uniform aperture, a, and a portion of contacting
solid (1-n) with vanishing aperture as shown in Fig. 1(b).
The apparent aperture, b, of the closed joint is defined
as b=a for the portion of void (n).

A representative section of an open joint with length,
L, and unit width is shown in Fig. 1(c). The joint
represents the open interface between two prismatic
blocks of thickness d, and d, separated by a gap c. The

Contact Points

Fig. 1. Joint modeling.
(a) Representative section of closed joint, (b)
ldealized section of closed joint, (c) Represen-
tative section of open joint, (d) Idealized section of
open joint

joint can be idealized as one portion of void (n) with
aperture, c+a, and another portion of void (1-n) with
aperture, ¢, as shown in Fig. 1(d). The apparent aperture,
b, of the open joint consists of two components with
b,=c+a for the portion of void (n) and b_=c for the
other portion of void (1-n).

3.2 Configuration of Water-Block Interaction Model

As shown in Fig. 2, the hydro-mechanical model
consists of two major components: the DDA method for
the rock mass and the FEM method for joint flow. The
initial properties of the joints such as aperture, length,
orientation, and boundary conditions from the DDA
program are used to compute the piezometric heads and
fluid quantities at the joints with a FEM subroutine
called RFLOW. The seepage forces acting on the rock
blocks are computed from the piezometric heads using
a'subroutine called WPRESSURE. In the DDA program,
joint deformation is computed using the seepage forces.
In turn, joint deformation changes the joint properties
such as aperture, length, and orientation. A compu-
tational loop is followed until the results converge
according to a criterion selected by the user.

3.3 Subroutine RFLOW

Louis(1969) showed experimentally that the steady
flow of water in a single fracture of constant aperture, b,
and surface roughness can be laminar or turbulent
depending on the values of the Reynolds number,
Re=2bv/v, and the relative roughness, k/D,, where v is
the average velocity, v the kinematic viscosity of water,
k the fracture surface roughness, and D, the hydraulic
diameter of the fracture which is equal to 2b. Louis
(1969) also proposed different flow laws relating the
friction factor f and the Reynolds number Re which

Joint Deformation—

b L_»(F EM) - J

D Piezometric Head(H)
I

| -
L % RFLOW‘{

A

%»Seepage Force (F)—‘ WPRESSURE
|

L I

Fig. 2. Water-block interaction model.
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Fig. 3. Compilation of different flow laws and their range
of validity for a single fracture. The dashed lines
represent mathematical boundaries by Amadei
et al. (1995) and the solid lines the boundaries
determined experimentally by Louis (1969).

apply in different regions of the (Re, k/D,) space. Fig. 3
shows five such regions I-V, their corresponding mathe-
matical boundaries and the experimental boundaries
proposed by Louis(1969).

For parallel flow, and as shown by Amadei et al.
(1995), the mathematical boundary between turbulent
hydraulic smooth flow (region II) and turbulent com-
pletely rough flow (III) in Fig. 3 can be expressed as

8

Re = 2.553[1og(k/-ﬂ)] 8)
37

For non-parallel flow, and as shown by Amadei et al.

(1995), the mathematical boundary between laminar

flow (region IV) and turbulent flow (region V) in Fig. 3
can be expressed as

Re = 384[1+ S.S(k/Dh)l-S][log(kl/B”)T ©)

The mathematical boundaries defined by equations
(8) and (9) are shown as dashed lines in Fig. 3. These
mathematical boundaries were used in the non-linear
model presented below.

According to Bernoulli's theorem for ideal frictionless
incompressible fluids, the sum of the pressure head, h,
=ply,,, elevation head, h,= z and velocity head, h,= v/
2 g, is constant at every point of the fluid, e.g.

p 2

v
YW+z+2g_H+hv— constant= H, (10)
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where p is the pressure, z the elevation, v the average
velocity, H the piezometric head (=h;th,), and H, the
total head.

In the steady flow of water in a single fracture of
constant aperture, b, and length, L, the total head loss,
AH,, (also equal to the piezometric head loss, AH) takes
place due to the viscous resistance within the fracture.
As shown by Louis(1969), the average velocity, v, and
the gradient of piezometric head, i = AH/L, (also equal
to the gradient of total head, AH/L) for each hydraulic
region of Fig. 3 can be written as follows

T (11

v=Ki’= K(AI—{)
where AH is the piezometric head loss. Values of the
hydraulic conductivity, K, and the exponent, a., for each
flow region of Fig. 3 are reported in Table 1. For each
hydraulic region, the element discharge, Q, and the

piezometric gradient, i = AH/L, are such that

Q=vb= Kb(Ain (12)
L

Equation (12) can be rewritten as

Q=TAH with T= %‘;’AH“'l (13)

where T is the so-called fracture transmissivity.
Equation (13) is then modified depending on the
contact state (closed or open) between the joint sur-

Table 1. Expression of hydraulic conductivity and degree
of non-linearity for the different hydraulic regions of Fig. 3
(after Louis(1969))

Hydraulic ~ Hydraulic Conductivity Ex- . Flow
Region (K) ponent oo ndition
(o)
2
I KF% 1.0 Laminar
025 4/7
i K"=|la[66%§(%) -bz} 47 Turbulent
m  Ky=4%% 37
w="4g log == /b 0.5  Turbulent
h
W Ky= Eb” = 1.0 Laminar
12v[1+8.8(k/D,) "]
\Y Kv=i/§ log[kl/.—'?-}/t_) 0.5  Turbulent
h
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faces. For a closed joint (Fig. 1(b)), the element
discharge, Q, is defined as

Q=TAH with T= nIESAH“"1 . (14)

For an open joint (Fig. 1(d)), the element discharge,
Q, is defined as

K.b

. ap-1 Klfnbku
Q=TAH with T=n—=AH +(1-n)——————
L

AR
Lal—n

(15)
where K, and o, are respectively the hydraulic con-
ductivity and exponent for one portion of void (n) with
apparent aperture b,=c+a. Likewise, K, and «,, are
respectively the hydraulic conductivity and exponent for
the other portion of void (1-n) with apparent aperture
b, .=c.

Consider now a single planar joint element, i, of
length L' and constant aperture b' as shown in Fig. 4(a).
Equation (13) can be used to compute the discharge
through the joint element in terms of the piezometric
head loss between its two end nodes defined here as )

Rock block

k

—q v se—a

Q a-—"e

Rock block

(@)

G Cs Cs o3

) 3) © (®)

2 ) m
(b)

Fig. 4. Construction of total system of equations.
(a) Single joint element, (b) Joint network

and k. The discharge at node k, Q',, and the discharge
at node j, Q', are equal to

Qik=TiAHi=Ti(Hik_Hij)

Qi=-TAH'=-T'(H'-H") W)

These two equations can be rewritten in matrix form
as follows

{ Q' } - T;l:l —I:H Hi,k} or Q=TH (17)
Q} -1 1]UHj

where Q' is the element nodal discharge vector, T the
element characteristic matrix, and H' the element nodal
piezometric head vector.

So far, the elements in the network have been
considered individually, and expressions giving the
discharges in terms of the nodal piezometric heads have
been developed. For a complete joint network, however,
the interaction between the different elements needs to
be taken into account. This implies that there must exist
equilibrium at any given node of the network between
the discharges of the elements connected to the node,
including any inflow or outflow at that node. Consider
a simplified model of a fracture network below a dam as
shown in Fig. 4(b). The quantity C; is the inflow (C, and
C,) or outflow (C, and C,) at any node j. In general, any
C; will be positive for inflow (C, and C,) and negative
for outflow (C, and C,). Equilibrium at any node means
that the sum of the discharges of the elements connected
to the node equals the inflow or outflow at that node. For
any node j, the equilibrium equation can be expressed as
follows:

Y Q=G (18)
where the summation runs over all elements con-
nected to node j. By repeating the procedure for all n
nodes, and using equations (17) and (18), a system of
equations can be derived e.g.

n Ty = Tyl H C,
Ty Ty o Ty} Ha — C; or TH=C (19)

l:l;nl T"uZ : . T‘n I—in Cn

where T is the network characteristic matrix. H is the



network piezometric head vector, and C is the network
flow vector. Before the total system of equations (19)
can be solved, it is necessary to introduce the boundary
conditions for the network nodes. The boundary
conditions at a given node j can be of two types;
specified piezometric head (H ;) or specified flow (C).

The total system of equations (19) is a non-linear
system due to the fact that T depends on H. However, it
can be solved by successive iterations. First, for each
joint element, flow is assumed to be laminar with (a=1.0
and K=K, or K and an initial value for the nodal
piezometric head, H,;, is assumed for each node. The
fracture transmissivity, T, is computed using equation
(14) or (15) for each joint element, and the total system
of equations (19) is formed using equations (17) and
(18). The total system of equations is solved by the
Gauss elimination method to obtain a new value of the
nodal piezometric head, H,., for each node. The
velocity, v, defined by equation (11) and the Reynolds
number, Re=2bv/v, are calculated for each joint element
using the new value of the nodal heads. Using Fig. 3, the
values of Re and the relative roughness, k/D,, determine
if the flow in each joint element is laminar or turbulent.
If the flow is laminar, o0 and K remain the same. If, on
the other hand, turbulent flow develops, new values of o
and K are selected using Fig. 3 and Table 1 for each joint
element, and a new initial value for the nodal
piezometric head is assumed with H =H,,
node in the next iteration. Then, using equation (14) or
(15), a new fracture transmissivity, T, is computed for

for each

each element, and a new total system of equations is
formed. The total system of equations is solved to obtain
a new value of the nodal piezometric head, H,,, , for each
node. The process is repeated until, for two successive
vewHinil Hyy; 18
below a minimum tolerance specified by the user.

As a validity check of the RFLOW subroutine, a
comparison was made with the experimental work
reported by Grenoble(1989), who constructed a physical
laboratory model to simulate two-dimensional flow
through a jointed rock mass(Kim, 1988).

steps, a and K remain the same and iH

3.4 Subroutine WPRESSURE

A new algorithm for computing seepage forces acting
on rock blocks from the nodal piezometric heads was
developed. The fluid pressure acting on the rock blocks
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can be computed from the values of the pressure heads
at those nodes defining the blocks. The fluid pressures
are transformed as point loads along the sides of each
rock block. Then, the point loads are given as boundary
conditions in the Discontinunous Deformation Analysis.
Using this approach, there is no need to artificially regulate
the deformations of the joints as in other methods.
Therefore, the rock blocks can deform freely according
to block system kinematics.

As a validity check of the WPRESSURE subroutine
in the DDA program, the problem of the opening of a
crack (joint) in an infinite domain subjected to an
internal pressure was considered and compared with an
analytical solution(Kim, 1998).

4, Effect of Water Level on Tunnel
Stability

The excavation of a (half) circular tunnel is con-
sidered as a numerical example. The tunnel has a
diameter, D, of 10 m and is located at a depth of 409.6
m below the surface. The water level varies between 100
and 500 m above the center of the tunnel. The domain
of analysis is 5D (50 m) wide and 4D plus tunnel height
(46.71 m) high. A vertical compressive stress of 10 MPa
is applied on the top boundary of the domain (to
simulate the load associated with 384.6 m of rock) and
no lateral deformation is allowed. The intact rock has a
unit weight of 26 KN/m’, a Young's modulus of
3.6 GPa, and a Poisson's ratio of 0.2. The joints have a
spacing of 4 m, an initial aperture of 0.01 mm, a normal
stiffness of 36 GN/m, a friction angle of 35° and a
cohesion of 0.5 MPa. No reinforcement is applied in this
example. As boundary conditions, only elevation heads
(zero pressure heads) were applied on the nodes along
the excavated surface of the tunnel.

Without water the seftlement of the tunnel roof was
found to be equal to 165.2 mm (Table 2). The tunnel
roof deforms but does not collapse as shown in Fig.
5(a). As the water level increases, the tunnel roof
settlement increases resulting in complete collapse of
the tunnel (see Table 2 and Figs. 5(b)-(f)).

5. Conclusion

The hydro-mechanical coupling algorithm was im-
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Table 2. Effect of water level on the stability of the tunnel
in Fig. 5

Water Level (m)

Roof Settlement (mm)

0 165.2
100 237.6
200 706.4
300 1632.8
400 2088.2
500 4514.0

{
|
(a) ®)
-

© (d)

L.

© ®
Fig. 5. Effect of water level on tunnel stability. (a) No
water, (b) W.L.: 100 m, (c) W.L.: 200 m, (d) W.L.:
300m, (e) W.L.: 400m, (f) W.L.: 500 m

plemented into the original DDA program of Shi (1988)
and modified by Lin(1995). The algorithm includes
hydro-mechanical coupling between rock blocks and
water flow in fractures.

The hydro-mechanical coupling algorithm is very
important in rock engineering problems were seepage
takes place in natural fractures and joints.

Seepage forces and water pressure can be control-
ling factors in rock mass stability as illustrated in the
tunnel example presented in this paper.

The new algorithm is limited to steady state flow and
needs to be modified to include transient flow

phenomena.
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