Growth behavior of Ti-Al-V-N Films Prepared by Dc Reactive Magnetron Sputtering

DC Reactive Magnetron Sputtering법에 의한 Ti-Al-V-N 박막의 성장거동

  • Sohn, Yong-Un (Minerals & materials processing Division, Korea Institute of Geology, Mining & materials(KIGAM)) ;
  • Chung, In-Wha (Minerals & materials processing Division, Korea Institute of Geology, Mining & materials(KIGAM)) ;
  • Lee, Young-Ki (Department of Semiconductor Engineering, Ui-Duk University)
  • 손용운 (한국자원연구소 활용연구부) ;
  • 정인화 (한국자원연구소 활용연구부) ;
  • 이영기 (위덕대학교 반도체공학과)
  • Published : 1999.07.01

Abstract

Ti-6Al-4V-N films have been grown onto glass substrates by dc reactive magnetron sputtering from a Ti-6Al-4V-N alloy target at different nitrogen partial pressure, input powers and sputtering times. The influence of various sputtering conditions on structural properties of Ti-6Al-4V-N films was investigated by measuring their X-ray diffraction. The quaternary Ti-6Al-4V-N film is crystallizing in a face centered cubic TiN structure, the lattice parameter is smaller than the TiN parameter as titanium atoms of the TiN lattice are replaced by aluminum and vanadium atoms. The films show the (111) preferred orientation and the (111) peak intensity decreases as the nitrogen partial pressure is increased, but the intensity increases as the sputtering time is increased. The deposition rate and the grain size are alto related with the variation of various sputtering conditions.

Ti-6Al-4V 합금을 타겟트로 사용하여 유리 기판위에 dc reactive magnetron sputtering법으로 $N_2$/(Ar+N_2)$ 비, 기전력 및 시간등의 여러 가지 증착 조건에서 Ti-6Al-4V-N 필름을 증착하였고, 각각의 증착 조건에 따른 결정구조 및 우선방위 거동은 X-선 회절장치를 사용하여 조사하였다. Ti-6Al-4V-N 필름은 본질적으로 fcc 결정구조의 $\delta$-TiN에 Al과 V이 결함으로서 고용된 변형된 형태의 $\delta$-TiN구조이고, TiN의 격자상수(4.240 )보다 작은 값을 나타내었는데, 이는 Ti(1.47 )에 비하여 상대적으로 원자반경이 작은 Al(1.43 )과 V (1.32 )이 Ti의 격자위치에 치환된 결과이다. 그리고 Ti-6Al-4V-N 필름은 $_N2$가스 분압이 감소됨에 따라 (111) 우선방위 성장거동을 하였을 뿐만아니라 증착시간의 증가에 따라 뚜렷한 (111) 우선방위 성장거동을 나타내었다. 그리고 증착속도 및 결정입도의 거동 또한 여러 가지 증착 조건에 크게 의존한다

Keywords

References

  1. Metall. v.37 O. Knotek;H. Reimann;W. Bosch
  2. Thin Solid Films v.96 W. D. M$\"{u}$nz;D. Hofmann;K. Hartig
  3. Metalloberfl$\"{a}$che v.37 W. D. M$\"{u}$nz;D. Hofmann
  4. Met. Powder Rep. v.39 Observations on Ti(C,N) coating by reactive sputtering O. Knotek;W. Bosch
  5. Thin Solid Films v.82 G. B. Marchwicka;L. K. Stepniewska;W. Posadowski
  6. J. Vac. Sci. Technol. v.A4 O. Knotek;W. Bosch;T. Leyendecker
  7. J. Vac. Sci. Technol. v.A4 W.D. Munz
  8. J. Vac. Sci. Technol. v.A4 H. A. Jehn;S. Hofmann;V. E. R$\"{u}$ckborn;W. D. Munz
  9. J. Vac. Sci. Technol. v.A5 O. Knotek;W. D. M$\"{u}$nz;T. Leyendecker
  10. Thin Solid Films v.153 O. Knotek;T. Leyendecker;F. Jungblut
  11. Wear v.133 O. Knotek;R. Flasing;M. A tzor;H. G. Prengel
  12. Elements of X-ray Diffraction(2nd Edition) B. D. Cullity
  13. Monatsh. Chem. v.94 W. Jeitschko;H. Nowotny;F. Benesovsky
  14. J. Solid State Chem. v.53 J. C. Schuster;J. Bauer
  15. To be publicated Y. U. Sohn(et al.)
  16. J. Vac. Sci. Technol. v.A4 J. E. Sundgren
  17. J. of the Korean Society for Heat Treatment v.8 Y. K. Lee;Y. U. Sohn;Y. S. Cho;Y. S. Kim;S. Y. Kim
  18. Electronic and Ionic Impact Phenomena v.1;2 H. S. W. Massey;E. H. S. Burhop
  19. J. Vac. Sci. Technol v.A7 M. A. Lewis;D. A. Glocker; J. Jorne
  20. Thin Solid Films v.197 J. Pelleg;L. Z. Zerin;S. Lungo
  21. IOP Handbook of thin film process technology D. A. Glocker
  22. J. Mater. Sci. v.24 D. N. Lee