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Fatigue Analysis of Theoretical Background Using SACS

James C. Angher’

Structures subjected to large numbers of
cycles of oscillating loads may fracture even at
very low nominal stress levels. This mode of
failure, called fatigue, has been recognized for
many years and a grate deal of research has
been carried out to develop analysis and design
procedures to minimize the likelihood of such
failures. It is particularly important to have
such procedures available for expensive struc-
tures in hostile environments with the presence
of human life. Offshore structures involve all
three of these requisites. The most common
approach to estimating the ability of a structure
to survive repetitive loading is based on the
Palmgren-Miner accumulation of damage hypo-
thesis. The theory rests on several assumptions.
Within the framework of the Palmgren-Miner
theory two basic approaches Spectral (or Sta-
tistical) fatigue analysis and Deterministic fatigue
analysis to fatigue analysis are currently in use.

Fatigue is a post-processing program of the
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SACS suite that evaluates the performance of
the structure with respect to fatigue failure. It
uses the common solution file as its funda-
mental database supplemented by several input
lines where the user selects from among the
various analysis and design options available.
Some of the major theory and features of this
Fatigue module are:

1. S-N Curves

Numerous S-N curves are intrinsic to the
Fatigue program The API-RP2A X and X curves
are represented mathematically as:
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Where NGs) is the allowable number of cycles for
stress range 4o and m is the inverse log-log
slope of the S-N curve. The scale effect correction
factor applied to N(s) when incorporating API



thickness dependent. effects is taken as:
N ()= M9l—f=17"%"

Where N'(s) is the allowable number of
cycles for stress range 4o, to is the limiting
branch thickness and t is the member thickness.
For the S-N curve from Norwegian Standards
(NS3472E), the following equations allowing for
material thickness variations are used:

In Air:

N(s)<10

log N(s)=12.16-0.75X log —3’2— -3.0xlog do
N(s)>10

log N(s)=1562-1.25xlog —3‘2— -5.0xlog do

In Water:
N(s)<10®
log N(s)=12.16-0.75 % log -3% -3.0xlog do

2. Load Path Dependant SCF

Load path dependant SCF’s are determined
using the following procedure: For any tubular
connection, all braces that lie in a plane with
the chord or within 15 degrees of that plane
are considered in the calculation of load paths
and SCF's. The chord member(s) are selected
based on the following hierarchy:

1) Largest diameter

2) Largest wall thickness

3) Highest yield stress

4) Member that are in-line with a 5 degree
tolerance

The connection is first checked for K-Joint
consideration. Only multiple braces on the same
side of the chord are considered as part of the
K-joint. For any brace, the axial load component
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normal to the chord is balances by the axial
load component normal to the chord in other
braces on the same side of the chord. The
brace with the smallest normal axial force is
considered first with the brace containing the
largest opposing normal axial force. The balanced
load is subtracted from the opposing brace and
the process is repeated until all K-Joints are
identified.

Any X or cross joint path are considered next.
Only braces on opposites sides of the chord are
considered as part of the X-Joint. The remaining
unbalanced K-Joint axial load component normal
to the chord is balanced by the axial load
component normal to the chord in an opposing
brace on the opposite side of the chord. The
brace with the largest opposing normal axial
force is considered first. The balanced load is
subtracted from opposing brace and the process
is repeated until all X-Joints are identified.

T/Y load paths are identified last. Braces
with the remaining unbalanced axial Joad component
normal to the chord is classified T/Y-Joints.
The Load Path SCF is calculated as a weighted
average of the K X and T/Y load path percentages.

3. Spectral Fatigue

The spectral approach to fatigue is an attempt
to account for the random nature of a confused
sea in a rational manner. The method assumes
that there is a definable relation between wave
height and stress ranges at the connections, and
that at any point the elevation of the sea above
its mean value is a stationary Gaussian random
process. These assumptions are most applicable
for low to moderate seastates. Since these are
the seastates of interest in fatigue studies, this
assumption can reasonably be accepted.

The following section gives a more detailed
background on the theory of spectral fatigue. For
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non-tubular members and plates, stress points
at the extreme outer fibers are evaluated. For
tubular connections, Fatigue investigates eight
points on the chord and brace sides of the
connection. For the purpose of this discussion,
it is assumed that we are interested in calcul-
ating the total fatigue damage at one specific
point of the connection,

3.1 Linear Systems

It is shown in standard reference that linear
systems whose properties do not change with
time can be characterized in the frequency domain
by an expression of the form:

Y(H=HHX (1)
Where!
F = Frequency.

X({f) = Fourier transform of the excitation
Y(f) = Fourier transform of the response.
H(f) = Transfer function.

The transfer function (also called the frequency
response function) can be thought of as the
amplitude of the sinusoidal response when the
excitation is a sinusoid of unit amplitude. Equation
(1) can be extended to the case of much response
function to a given excitation by interpreting
the terms in a matrix sense. In subscripted
notation it is written as:

Yi(f)= H; (f)X(f) (2)

In equation (2) Y and H are NX1 matrices(or
N component vectors) and X is a scalar{or 1X1
matrix). Taking the outer product of eq.(2) with
itself results in the following:

YANY;(H=H;(DH;(NX* () 3

If the excitation, x(t), is a random function
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of time, then its Fourier transform, X(f), is also
a random function, as are those of the res-
ponses. Yi(f). In this case equation (3) is a
relation between random functions (note, however,
that the transfer functions, Hi(f), are well
defined and not random).

We represent the average value of a random
variable, Z, by the notation Z. The average of
both sides of equation (3) gives:

Y, Y,-HH X )

For our purpose we will be interested only in
the diagonal terms of this matrix equation:

Y{z =H,' ZXZ (5)

For any random function defined in the
frequency domain, Z(f), the function ZXf) is
called the power spectral density (or sometimes
the mean-square spectral density) of the
process and is designated by:

S.(N=2*(H 6

It is shown in standard references that the mean-
square value of a stationary random function of
time, y(t), (a stationary process is one whose
statistics do not change with time) is give by:

D= [ snar ™

The square root of this is called the root-
mean-square (RMS) value. Combining this definition
with equations (5), (6) and (7) we get the RMS
value of the response of our system:

Y=y [, Hi¥HS, (Wt ®

For fatigue analysis of offshore structures,
the excitation is the elevation of the sea’s surface
at a point as a function of time, h(t), and the



responses of interest or stationary random
function are the hot spot stress ranges at the
connections. Here stress range is defined as the
difference between successive maximum and
minimum peaks in the plot of stress vs. time.

Thus if the spectral density of a particular
seastate Sp(f), is known, and the transfer
function Hi(f) for the point can be calculated,
then the statistical cyclic stress range(RMS
cyclic stress range) at that point for this
particular seastate is:

0 rus i=v j;)ooHi2(f)Sh (Hdf 9

3.2 Transfer Function

3.2.1 Cyclic Wave Loading

A transfer function defines the ratio of the
range of cyclic stress to wave height as a
function of frequency (usually for one direction
of wave). If, for each frequency, the input to
the system is a unit amplitude sinusoid of that
frequency, then the steady state amplitude of
the response is the transfer function at that
frequency. In our case the input is the elevation
of the sea at a point above its undisturbed
position (wave height) and the responses are
the brace stresses at the connections. In reality
our system is not truly linear so the fund-
amental relationship of equation (1) is only
approximately true, but the approximation is a
very good one if the waves characterizing the
fatigue environment are not too large. The Airy
linear wave theory results in wave profiles that
are pure sinusoids, however for waves of small
amplitude (as are typical in fatigue studies) the
profiles are nearly sinusoidal and thus these waves
can reasonably serve as transfer function generators.

To generate a transfer function for a particular
fatigue load case (wave direction), several waves
of various heights but constant steepness are
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used to load the structure. These waves need
not necessarily be the waves from the fatigue
environment, but waves chosen based on the
dynamics of the structure. The stress is calculated
at various wave positions (per the user). The
difference between the maximum and minimum
stress, called the stress range, is determined for
each wave (see figure below).

MAXIMUM STRESS

CYCLIC STRESS

12345678910111213141516  WAVE STEP
Fig. 1 Stress range

Diving these stress ranges by one-half of
the corresponding wave height produces stress
ranges for waves of unit amplitude (for sinu-
soidal waves, wave height equals twice the
wave amplitude). The relationship between the
stress ranges of unit amplitude and the corr-
esponding wave frequency for all waves considered
is the transfer function (see figure below).

CYCLIC STRESS
WAVE HEIGHT
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Fig 2. The relationship between the stress ranges
of unit amplitude and the corresponding
wave frequency

3.2.2 Cyclic Wind Loading

For wind spectral analysis, a mechanical
transfer function for each mode is used hy the
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program. The mechanical transfer function for
any mode, H(f), defines the ratio of the range
of cyclic stress as a function of the wind
frequency and the mode natural frequency as
follows:

H(f>=—,17'_[[1~(—J%)Z]H[zc(—é)zm %

where K is the generalized stiffness, fn is
the natural frequency and c is the percent damping.

3.3 Spectral Density

3.3.1 Wave Height Spectra

Wave height spectra are used to characterize
the random behavior of waves statistically.
From a wave spectrum, a wave height spectral
density relating the probability distribution at
various frequencies can be developed. Three
forms of wave height spectral density function
are commonly used in the offshore industry, all
of which are incorporated into Fatigue; they
are:

Pierson-Moskowitz Spectrum(Bretschneider’'s
Form)

51T, 1
6 (F)°

Spu(F*)= exp[—2(F)™*]

JONSWAP(Joint North Sea Wave project)
Spectrum

SHF" )=—‘i’1"—(cf—*) exp[lm’ expl -JE;}Z—Q]}

The terms in these expressions are:

hs = Significant wave height, defined as the
average height of the 1/3 highest
waves.

To = Dominant wave period, the period for
which S(f) is a maximum.

F" = Dimensionless frequency, f/fo, what fo is
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the frequency corresponding to To.

y, ¢ and C are parameters characterizing
the JONSWAP spectrum. The following defaults
and built In to the program:

y =33
e = 007 for F'<1 0.09 for M1>1
C =155

Onchi-hubble Double Peak spectrum

4@+ D 0 R

SoH(f)z_g X I(/lj) (an)ufﬂ
exp[—%:—l(—fj}-’-)“]

Where f is the wave frequency, A is the
peakedness, hs is significant wave height and f,
is the spectral peak frequency.

3.3.2 Wind Spectra

The generalized force spectrum used for
wind spectral analysis is a Harris wind
spectrum with gust effects spatial correlation
and mean wind velocity varation. For any
mode, the generalized force spectrum Si(f) is
taken as:

S:H =% FitLil(P*Su(h)

Where F; is the generalized force and Su(f) is
the Harris spectrum given by:

S,(H= 4k7}1(f) =

C+n(H?)

L
where 7,(f)= f(TH‘
10

Where Ly is the Harris spectrum reference
length and vio is the velocity at the reference
height. The term J. and Jn are the mean wind
velocity variation function and the gust effects
spatial correlation function, respectively, as
recommended DNV Gust Wind Response Analysis.



3.4 Fatigue Damage

From equation (9), the RMS stress for a
particular spectrum I, of the fatigue environ-
ment can be calculated. where Si(f) is the
spectral density and H(f) is the transfer for the
direction being considered.

dans, = [, H()x Si(has

For every RMS stress density there exist an
average time, T, between zero crossings with
a positive slope for a stationary Gaussian pro-
cess with zero mean. This period called the
Zero Crossing Period is given by:

0 RMS,

TZ= ©o
| 77 B x sipar

For a narrow band process this is the
average period or the reciprocal of the average
frequency of the process. The expected number
of cycles, N, associated with this spectrum
during the design life of the structure is:

mlL

N= T,

Where L is the design life of the structure
and m is the fraction of the design life that
this spectrum prevails. For a given stress range
s, the number of cycles to failure, NF(s), can
be found from the S-N curve used. Thus for a
stress range between s and s+ds the amount of
damage, dD, is:
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dD= N(9 p(s)ds (10

Where p(s) is the probability that the stress
range is between s and s+ds.

Standard references show that if a linear
system is excited by a Gaussian random process,
then the response will also be a Gaussian
process, thus in our case, having assumed system
linearity and Gaussian excitation, the stress
time histories are Gaussian (at least to the order
of our approximations). We further assume that
each response is narrow banded, that the spectral
density of the response is significant only over
a narrow range of frequencies. Under these
conditions the stress range is a Rayleigh distri-
buted random variable having a probability density
function given by:

2
__ s _ 5
p(s)= o expl 2X02RMS] (11)
Where s=stress range and o rms=RMS value
of the stress range, evaluated by eq.(9).
Substituting equation (11) into equation (10),
the expected damage from the given spectrum
is:

N (s &
b= UZRMsifo Ngp(s) exp { ZXUZRMS,- }ds (12)

The total expected damage for all seastates
during the life of the structure is the sum of
the damages for each individual seastate. The
expected fatigue life is equal to the design life
divided by the expected damage. (]
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