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Abstract

This paper introduces an adaptive wavelet transform based on the lifting scheme, which is applied to signal denoising. 

The wavelet representation using orthogonal wavelet bases has received widespread attention. Recently the lifting scheme 

has been developed for the construction of biorthogonal wavelets in the spatial domain. Wavelet transforms are performed 

through three stages: the first stage or Lazy wavelet splits the data into two subsets, even and odd, the second stage 

calculates the wavelet coefficients (highpass) as the failure to interpolate or predict the' odd set using the even, and the 

third stage updates the even set using neighboring odd points (wavelet coefficients) to compute the scaling function 

coefficients (lowpass). In this paper, we adaptively find some of the prediction coefficients for better representation of 

signals and this customizes wavelet transforms to provide an efficient framework for denoising. Special care has been 

given to the boundaries, where we design a set of different prediction coefficients to reduce the prediction error.

I. Introduction

The wavelet transform is an atomic decomposition that 

represents a real-valued continuous-time signal 丸。)in 

terms of shifted and dilated versions of a prototype 

bandpass wavelet function °(t) and lowpass scaling 

function ^(/) [1]. For special choices of the wavelet and 

scaling function, the atoms

。財(t) = 2 ‘72彼2々一"，)，i, k^Z, j<.J (1)

如认 t) = ‘게'%〉(잉t-命 (2)

form an orthonormal basis, and x( f) could be 

decomposed into

釦) = § 야 0展) + 寫羊如如3) (3)

with dj*  = f x너)饥仰出 and 야= J元(£)饱少3) 出 

The wavelet coefficients and scaling coefficients 

｛々｝ comprise the wavelet transform. The set of scaling 

coefficients ｛》｝ represents coarse signal information at 

scale ;= 0, whereas the set of wavelet coefficients ｛djt*｝ 

represents detail information at scales j—1,2, , • ,，/ 

For a wavelet centered at time zero and frequency 

djjk measures the content of the signal around the time 

이k and frequency 2(equivalently, scale j). Wavelet 

ransforms of sampled signals could also be computed 

extremely efficiently using multirate filter bank structures. 

The forward discrete wavelet transform (DWT) could be 

implemented with a lowpass filter h and highpass filter g. 

For the inverse DWT, a filter bank consists of a lowpass 

filter Ji and a highpass filter g. For h and g— gt it 

forms an orthogonal basis [1]. The representation of the 

data using wavelets coefficients offers an accurate 

approximation of f by using only a few wavelet 

coefficients. It comes from the fact that the vanishing 

moments property of wavelets suppresses low-order 

polynomial signals in the highpass filter and we get a 

small fraction of wavelet coefficients [2, 3].

Recently, it has been shown that denoising, 

compression, and signal recovery methods based on 

wavelet coefficient shrinkage or wavelet series truncation 

not only have the asymptotic minimax performance 

characteristics, but also do not introduce excessive 

artifacts in the signal reconstruction. These exceptional 

performances come from the fact that wavelet bases are 

unconditional bases for many signal spaces. The uncondi­

tional nature of the wavelet basis is crucial to wavelet­

domain processing, since it guarantees that the norm of 

the processed signal would not blow up even when some 

wavelet coefficients are discarded or reduced in magnitude [4].

The lifting scheme is a flexible tool for constructing 

wavelets without employing the Fourier transform and 

could therefore build wavelet bases over non-translation 

invariant domains such as bounded regions of Rp or 

surfaces. The lifting algorithm is asymptotically twice as 
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fast as the standard DWT algorithm and allows a fully 

in-place calculation of the wavelet transform without 

allocating auxiliary memory. The inverse wavelet 

transform could be found simply by undoing the 

operations of the forward transform. Also all wavelet 

transforais could be factored into the lifting steps with 

multiple predicts and updates [3, 5].

This paper concerns the application of lifting scheme 

to signal denoising. Thus, we introduce the adaptive 

lifting to customize the DWT and make the wavelet 

have the same correlation structure as the data. Through 

the adaptive lifting, the prediction error between the even 

and the odd set is to be minimized and then the 

prediction coefficients are computed adaptively. This 

paper is organized as follows. Section 2 provides the 

basics on the lifting scheme and discusses the design 

procedure for the predict and update stage. In Section 3 

and 4, we review the wavelet denoising algorithm and 

apply the adaptive lifting to signal denoising. Finally 

Section 5 contains concluding remarks and future works.

II. Lifting scheme

The lifting scheme could be used in situations where 

the Fourier transform is difficult to apply. Typical 

examples include [3];

① Wavelets on bounded domains: Construction of 

wavelets over an interval is required to transform finite 

length signals without introducing artifacts at the 

boundaries.

② Wavelets on curves and surfaces: To analyze the 

data on curves or surfaces or to solve equations on 

curves or surfaces, one needs wavelets intrinsically 

defined on these manifolds, independently of parameteri­

zation.

③ Weighted wavelets: Wavelets biorthogonal with 

respect to a weighted inner product are needed for diag­

onalization of differential operators and weighted 

approximation.

④ Wavelets and irregular sampling: Many real life 

problems require basis functions and transforms adapted 

to irregularly sampled data.

The lifting is a new method for constructing wavelets 

and it consists of following three stages.

① Split: Split the data into two smaller subsets

and /-p We refer to 7一】as the wavelet subset. The 

easiest possibility for the split is the Lazy wavelet.

② Predict: Make use of the subset to predict 

the subset based on the correlation present in the 

original data using a prediction operator P. It should be 

determined how many neighbors (vanishing moments) are 

used in the prediction.

7-1 : = 7-1 - R人-1) (4)

③ Update: Find a better A-y so that a certain scalar 

quantity Q() such as the mean is preserved, or

Q(^-i) = Q(』o) (5)

Then construct an update operator U and update as

人-1 : = A-i + (6)

Three steps of the lifting are described on Figure 1. 

(/_；} are computed by successively applying these three 

stages and represent the wavelet coefficients. {A_/} are 

also lifted based on these wavelet coefficients and denote 

the scaling coefficients.

Figure 1. Structure of lifting scheme : Split, Predict, 

and Update.

2.1 S 이 it
In this stage, we divide the signal into the even set 

{人_丿} and the odd set (/_;}. This mechanism is shown 

in Figure 2. At each level j,人一。」1),於 is set to A-itk 

and A is set to 了_混 In the simulation, we

don't split the data physically, but the split and predict 

stages are combined into one function because of the 

in-place calculation [2, 3].

가0】 x[l] x[2] x[3] x[4] ^[5] x[6] x[7] -

Figure 2. Schematic diagram explaining the split stage.
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2.2 Predict
The prediction operator P is based on the polynomial 

interpolation of order N~1 to find the predicted values. 

The higher the order of this operator, we could have the 

better approximation of the / coefficients based on the 

A coefficients. Through this prediction, we could 

suppress signals which resemble polynomials of order up 

to N — 1 [6]. To prevent artifacts at the boundaries, we 

use a translation invariant lifting, which has to be 

modified near the left and right borders to construct 

bases whose supports remain inside the signal. For the 

cubic interpolation, we have four cases:

Table 1. Filter coefficients for each cases when N— 4.

Case
No. of A's 

on the left

No. of Z's 

on the right
Pl 力2 力3 Pi

I 1 3 0.3125 0.9375 -0.3125 0.0625

II 2 2 -0.0625 0.5625 0.5625 -0.0625

III 3 1 0.0625 -0.3125 0.9375 0.3125

IV 4 0 -0.3125 1.3125 -2.1875 2.1875

In the simulation, the filter coefficients matrix p is 

constructed based on the infonnation in Table 1.

• Near the left boundary

Case I . 1 /I on the left and 3 4*s  on the right

-Middle

Case II. 2 A's on the left and 2 ks on the right

- Near the right boundary

Case m. 3 人's on the left and 1 人 on the right

Case IV. 4 人's on the left and 0 /i*s  on the right

To find the prediction coefficients, we first design a

prediction operator P so as to have better approximation 

of the signal of order up to N— 1 [7]. 

that all polynomials 

suppressed if

of order

For N= 4, note

N— 1 would be

0.3125 0.9375
-0.0625 0.5625
0.0625 - 0.3125

-0.3125 1.3125

-0.3125 0.0625
0.5625 - 0.0625
0.9375 0.3125

-2.1875 2.1875 .

Figure 3 shows a 4-point prediction with the filter 

coefficients matrix with p. Arrows indicate the compo­

nents used in the computation.

-3°
-31
-32
-33

-2°
-21
-22
-23

1° 2° 3°
I1 21 31

-1° 0°
-I1 01 _ -.
-I2 o2 I2 22 32
-l3 03 I3 23 33

0
—p2

1
-力3 
0

O 4x1 (7)

Figure 3. Elements used in the computation of 4-point prediction.
Eq. (7) is simplified into

Vb = b, (8)

where V=

-3°
-31
-32
-33

3°]
31
32

and

-1° 1°
-l1 I1 
-l2 I2 _ 
-I3 I3 33

[一 2°, -21, -22,
[1, 0, 0.
[2°, 21, 2”,
[4°, 41, 42,

2.3 Update
The update stage preserves all the polynomials of 

order N— 1. To find the update coefficients, we first 

initialize the integral-moment matrix ”矿u(NxL), where 

L is the length of the signal. For N=4 at level j=0,
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/>e(4 xl) is the 4-point prediction coefficient matrix. 

Table 1 contains the filter coefficients for JV=4, which 

are the solution of Eq, (8) for four different cases.

Once all the moments have been initialized, the moments 

corresponding to the』's have to be updated to preserve 

the average at eveiy level. The idea is that each / 

coefficient would give back to the Ts that were used to 
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predict it as it received, and this amount is given by the 

prediction coefficients [6].

W*2jt+2  / ：=戒左+" + 力 2"+1 刀以+1， £=0,1,2,3

(10)

A오sm血g the signal length 乙 =16, for £ =0,1,2,3,

(1) Case I : mi/ ：=刀玖 + 力i, $ + /*

(2) Case II : … +2 ：= 시+2 + M £ + 5命 ...

(3) Case HI : m，+8 ：=泓，+8 +力3,，+1 湖3

(4) Case IV : w^/+8 : = 孩5 + 써5

Figure 4 shows the relationship between coefficients, 師％ 

on the moment update.

Figure 4. Moments update.

To find the update coefficients for every 丫> we solve an 

equation:

[刀说-2 m2k w^t+2 秫4+4】讯— 履为+[' (11)

⑴ Case I : [wq tn^ W4 t써] t爲 = m{T

(2) Case II : ... |■渴 刀场]磁= ...

(3) Case ID :[祸 m[Q 湖4]諜=m[3T

(4) Case IV : [mJ 刀wj4]z4 = ，꺼5'

Finally, we update 人's based on /s with the update 

coefficients. For each *

y,a+/~ 1 + ^i,k y~j,k » /=0,1,2,3
(12)

⑴ Case I : A-Li : + 7-zo , 1,2,3

(2) Case U :

—-j,(+1 ：=人一九 f+l + T.2 /-；,2 . f=0,1,2,3 ...

(3) Case DI :

~j. i+4 * —人—/, f+4 + 必6 /-7,6 • /=0,1,2,3

(4) Case IV :

(+4 ■ —j, f+4 十犯,7 /-;,7 > i~ 0» 1,2, 3

2.4 Adaptive lifting
The prediction filter is designed so that it could 

eliminate polynomials up to order N~ 1, leaving only 

high-order polynomials. Therefore, the predict stage is 

equivalent to applying a highpass filter to the signal, 

whereas the update filter preserves low-order polynomials. 

However, if the signal doesn't have the polynomial 

structure, we would get large wavelet coefficients in 

magnitude. To optimize the approximation of signals with 

few wavelet coefficients, one could also construct 

adaptive wavelet bases with liftings that depend on the 

signal [8].

To represent the signal precisely, some (M) of the 

prediction points (2V) are calculated to match the structure 

of the signal. In other words, we trade off them against 

the vanishing moments (N — M). M points are used to 

adapt the prediction operator P to the signal which has 

both polynomial and non-polynomial structure. At every 

scale \ we minimize the squared prediction error with 

the N— M degrees of freedom to find the best 

prediction operator P[7]. The vector of prediction error 

is then given by

e = x0-XeA (13)

where 力以]v〉u), x0 e(£xl) is the odd L samples to 

predict, and Xe e(LxJV) contains the neighboring even 

samples used in the predict stage. Then we solve the 

following minimization problem to find the prediction 

coefficients

min p ||x0 —Xe/)||2 subject to Eq. (7)

(14) 

Note that the objective function consists of the sum of 

squared prediction errors eTe with the M polynomial 

constrains. This problem could be solved using the QR 

algorithm which could be found on [9].

III. Denoising

Due to the concentrating ability of the wavelet 

transform, the DWT has been successively applied for 

noise removal. If a signal has its energy concentrated in 

a small number of wavelet dimensions, its coefficients 
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would be relatively large compared to any other signal 

or noise that has its energy spread over a large number 

of coefficients. This means that thresholding or shrinking 

the wavelet transform would remove the low amplitude 

noise or undesired signal in the wavelet domain, and the 

inverse DWT sill then retrieve the desired signal with 

little loss of detail [4, 10]. Because of good resolution in 

the both time and frequency domain, better noise 

separation with the wavelet transform other than with the 

spatial-domain or frequency너。main filtering is possible.

In [11], it has been shown that the denoising with the 

wavelet transform outperforms the FFT-based 

(frequency-domain) scheme when the input signal contains 

sharp edge. Also, it has been found that the wavelet 

denoising is effective in that although the noise is 

suppressed, edge features are retained without much loss. 

A drawback of the FFT is the fact that the edge 

information is spread across frequencies because of the 

basis functions not being localized in time or space, and 

hence the low-pass filtering results in the smearing of 

the edge. The denoising steps are given by

① compute the DWT Y = W y, where W is the 

wavelet transform matrix.

② perform thresholding in the wavelet domain, 

according hard thresholding

戈=w明)=保探; (15)

or according to soft thresholding

况 = W.f) -= 严(1징 H — t), I然; (16)

where sgn( Y) is the sign value (-1 for negative and 1 

for positive) of Y.

③ compute the inverse DWT x =坏厂'衣

For better denoising, we make use of the denoising 

based on soft thresholding the DWT coefficients [4]. The 

basis is adaptively changed according to the input signal 

to represent the signal effectively and it is applied to the 

DWT for denoising [7].

IV. Sim니ation

Four signals, Blocks, Bumps, Heavy Sine, and Doppler 

[4] were tested fbr signal denoising. Each signal had 

1024 samples and was corrupted by a white Gaussian 

noise with the standard deviation 1, where the standard 

deviation of the signals were varied from 5, 10, and 20.

In Table 2, the mean squared error (MSE) using 

Daubechies 8 (db8) as a basis and one with the adaptive 

lifting are compared. We set N= 4 and M~ 3 for 

the construction of the lifting. Because of large wavelet 

and scaling coefficients, we reduced the vanishing 

moments to N=0=2 and M= 2 at the boundaries. At 

only level 1, we found the optimized prediction coeffi­

cients using Eq. (14). The filter coefficients p2, and 

Da were obtained through the algorithm in Section 2.2 

and />i was adaptively optimized based on Eq. (14). 

According to the predict stage, the update coefficients 

were modified. We have calculated MSEs 100 times for 

each signal.

It is clearly seen from Table 2 that if the signal 

contains sharp transitions causing large amplitude wavelet 

coefficients, the adaptive lifting outperforms db8 

because of the reduced vanishing moments. For Doppler, 

our implementation of the adaptive lifting has shown to 

be somehow unstable. Figure 5 shows a Blocks which 

is denoised through the adaptive lifting. In Figure 6, 

most of the noise is separated in the details DI and D2. 

The MSEs in Table 2 아low that the adaptive lifting 

performs nearly as good as db8.

Table 2. MSEs of signal denoising with different signals.

SNR

Blocks Heavy Sine Doppler

<ft>8 Lifting
Adapivc 

lifing
db8 Lifting

Adaprive 

lifting
db8 Lifting

lifting
db8 Lifting

lifting

5 OJ368 0.4617 0.4433 0,2394 0.2 IM 0.2198 0.0934 0.0869 0.0824 0.2013 0.2427 0.2134

IO 0.4549 OJ157 0.4314 0.2327 0.3094 0.2911 0.16S7 0.1464 0.1374 0.3332 0 J46? 0.U42

20 0J052 a«34 0.4162 0JS55 0.4139 0.3857 0.2218 0.1910 0.1900 0.3839 0.5103 0.4234

Ad叩(*・ Hng upMt Maunum LmI > 6. NanHiinionfLG) *1.2
,30 - 1 1
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Figure 5. Blocks : Adaptive lifting with the update changed.
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Figure 6. Approximation and details of the adaptive lifting 
for Blocks.

V. Conclusions

In this paper, we have introduced the adaptive DWT 

based on the lifting with boundary cases considered. 

Using the lifting scheme it is particularly easy to adapt 

the DWT to the signals. The adaptive lifting could 

represent both smooth and edgy signal elements.

For good performance, the shorter wavelets are 

required in the neighborhood of singularities, whereas the 

longer wavelets with more vanishing moments could 

improve the approximation in regions where the signal is 

more regular [8]. In terms of results, the adaptive lifting 

becomes the Daubechies 6-like DWT when the signal 

has singularities. In contrast, its performance is close to 

Daubechies 8 when the signal is more regular,.

To achieve short support and high order appro­

ximation, one may use multiwavelets which offer simulta­

neous orthogonality, symmetry, and short support. A 

multiwavelet system could simultaneously provide perfect 

reconstruction while preserving length (orthogonality), 

good performance at the boundaries (via linear-phase 

symmetry), and a high order of approximation (vanishing 

moments). This would be a good candidate for the 

further research.
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