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Abstract

This paper introduces an adaptive wavelet transform based on the lifting scheme, which is applied to signal denoising.

The wavelet representation using orthogonal wavelet bases has received widespread attention. Recently the lifting scheme

has been devcloped for the construction of biorthogonal wavelets in the spatial domain. Wavelet transforms are performed
through three stages: the first stage or Lazy wavelet splits the data into two subsets, even and odd, the second stage

calculates the wavelet coefficients (highpass) as the failure to interpolate or predict the odd set using the even, and the

third stage updates the even set using neighboring odd points (wavelet coefficients) to compute the scaling function

coefficients (Jowpass). In this paper, we adaptively find some of the prediction coefficients for better representation of

signals and this customizes wavelet transforms to provide an efficient framework for denoising. Special care has been

given to the boundaries, where we design a set of different prediction coefficients to reduce the prediction error.

I. Introduction

The wavelet transform is an atomic decornposition that
represents a teal-valued continuous-time signal x(#) in
terms of shifted and dilated versions of a prototype
bandpass wavelet function ¢{f) and lowpass scaling
function H(#) [1]. For special choices of the wavelet and
scaling function, the atoms
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form an orhonormal basis, and x(# could be
decomposcd into
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with &;,= [2(0¢,,(Ddt and ci= (D8, Dt
The wavelet coefficients {d; ,} and scaling coefficients
{c,} comprise the wavelet transform. The set of sealing
coefficients {c,} represents coarse signal information at
scale j=0, whereas the ser of wavelet coefficients {d; ,}
represents detail information at scales 7==1,2, - - -, [
For a wavelet centered at time zero and frequency fo,
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» measures the content of the sigpal arcund the time
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ransforms of sampled signals could also be computed
extremely efficiently using multirate filter bank structures.
The forward discrete wavelet transform (DWT) could be
implemented with a lowpass filter # and highpass filter g.
For the inverse DWT, a filter bank consists of a lowpass
filter 7 and a highpass filter g. For f=4 and g=g, it
forms an orthogonal basis [1]. The represcntation of the
data using wavelets coefficients offers an accuorate
approximation of f by using only a few wavelet
coefficients. It comes from the fact that the vanishing
moments property of wavelets suppresses low-order
polynomial signals in the highpass filter and we get a
small fraction of wavelet coefficients (2, 3].

Recently, it has been
compression, and signal recovery methods based on

shown that denoising,
wavelet coefficient shrinkage or wavelet series truncation
not only havc the asymptotic minimax performance
characteristics, but afso do not introduce excessive
artifacts in the signal reconstruction. These exceptional
petformances come from the fact that wavelet bases are
unconditional bases for many signal spaces. The uncondi-
tional mature of the wavelet basis is crucial to wavelet-
domain processing, since it guarantees that the norm of
the processed signal would not blow up c¢ven when some
wavclet coefficients are discarded or reduced in magnitude {4].

The lifting scheme is a flexible tool for constructing
wavelets without employing the Fourier transform and
could therefore build wavelet bascs over non-transiation
invariant domains such as bounded regions of RF or
surfaces. The lifting algoridhm is asymptotically twicc as
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fast as the standard DWT algorithm and allows a fully
in-place calculation of the wavelet transform without
allocating  auxiliary memory. The inverse wavelet
transform could be found simply by undoing the

operations of the forward transform. Also all wavelet

transforms could be factored into the lifting steps with

multipte predicts and updates {3, 5].

This paper concems the application of lifting scheme
to signal denoising. Thus, we introduce the adaptive
lifting to customize the DWT and make the wavelet
bave the same correlation structure as the data, Through
the adaptive lifting, the prediction error between the even
and the odd set is to be minimized and then the
prediction coefficients are computed adaptively. This
paper is orgamized as follows. Section 2 provides the
basics on the lifting scheme and discusses the design
procedure for the predict and update stage. In Section 3
and 4, we review the wavelet denoising algorithm and
apply the adaptive lifting to signal denoising, Finally
Section 5 contains concluding remarks and future works.

I1. Lifting scheme

The Jifting scheme could be used in situations where
the Fourier transform is difficult to apply. Typical
examples include [3];

(D Wavelets on bounded domains: Construction of
wavelets over an interval is required to transform finite
length signals withowmt introducing artifacts at the
boundaries.

@ Wavelets on curves and surfaces: To analyze the
data on curves or surfaces or to solve equations on
curves or surfaces, one needs wavelets intrinsically
defined on these manifolds, independently of parameteri-
zation,

©® Weighted wavelets: Wavelets biorthogonal with
respect to a weighted inner product are needed for diag-
onalization of differential operators and weighted
approximation.

@ Wavelets and irregular sampling: Many real life
problems require basis functions and transforms adapted
to irregularly sampled data.

The lifting is a new method for constructing wavelets
and it consists of following three stages.

(@ Split: Split the data into two smaller subsets A_,
and y_,. We refer 10 y., as the wavelet subset. The
easiest possibility for the split is the Lazy wavelet.

@ Predict: Make use of the A_, subset to predict
the y_, subset based on the correlation present in the

original data using a prediction operator P It shouvld be
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determined how many neighbors (vanishing moments) are

used in the prediction.
y-11= vy — PA_y )

@ Update: Find a better A_, sothat a certain scalar

quantity ¢X)such as the mean is preserved, or

&XA-) = A4y &)
Then construct an update operator I/ and update A_; as
Aoy = Ay + Uy p) (6}

Three steps of the lifting are described on Figure 1.
{y-;} are computed by successively applying these three
stages and represent the wavelet coefficients. {1_;} are
also lifted based on these wavelet coefficients and denote
the scaling coefficients.

) %

L Y

Aj+1 —| Split P

O

Figure 1. Structure of lifting scheme : Split, Predict,
and Update.

2.1 Split
In this stage, we divide the signal into the even set

{A_;} and the odd set {y_;}. This mechanism is shown
in Figure 2. At each level f, A_(j_qy0 IS Set to A_;4
and A _(;_y) 24+ 15 set 10 y_;, In the simulation, we

don’t split the data physically, but the split and predict
stages are combined into one function becanse of the

in-place calculation [2, 3).
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Figure 2. Schematic diagram explaining the split stage.
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2.2 Predict

The prediction operator £ is based on the polynomial
interpolation of order N-—1 to find the predicted values.
The higher the order of this operator, we conld have the
better approximation of the y coefficients based on the
A cocfficients, Through this prediction, we could
suppress signals which resemble polynomials of order up
to N—1[6). To prevent artifacts at the boundaries, we
use a translation invarant lifting, which has to be
modified near the left and right borders to construct
bases whose supports remain inside the signal. For the
cubic interpolation, we have four cascs:

= Near the left boundary
Case 1. 1A on the left and 3 A’s on the right
» Middle
Casc [I. 2A's on the left and 2 A's on the right
= Near the .right boundary
Case M. 3 A’s on the Jeft and 1 A on the right
Case V. 4 A's on the feft and 0 A’s on the right

To find the prediction coefficients, we first design a
prediction operator P so as to have better approximation
of the signal of order up to N—1[7]. For N=4, note
that all polynomials of order up to N—1 would be

suppressed if
-N
~30 .30 _12 g0 10 g0 30| O
=P

-8h -2t —itot it ot 3

_3? '_22 ‘12 02 12 22 32 -1 = O4x1 {7)
S3 St L1d gt 38 33|
~ Dy
Eq. (7) is simplificd into
Vb = b, ®)
_BB _10 10 30
__31 _11 1] 31
where V= _3 3217 g
-3% -8 3
[ —2% —2!, =22 =217 for casel
b= [ 1, 0, [)2. 0 17, for case Il
[ 2% 21, 28 28 17 for case INI'
[ 4% 4, 4% 4% 17, for case IV
and

p=(4x1) is the 4-point prediction coefficient mattix.
Table ! contains the filter coefficients for N=4, which

are the solution of Eq. (8) for four different cases.
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Table 1. Filter coefficients for each cases when N=4.

No. of A's |No, of A’s
Case b P2 P3 by
on the left|on the righ

I 1 3 0.312510.9375 | -0.3125 0.0625
I 2 2 00625 0.5625 | 0.5625 | -0.0625
i 3 1 0.0625 | -0.3125/0.9375 | 0.3125
v 4 0 -0.3125 1.3125 ) -2.1875 2.1875

In the simulation, the filter coefficients matrix p is

constructed based on the information in Table 1.

0.3125  0.9375 -—0.3125 0.0625
p=| —0-0625 0.5625 0.5625 —0.0825

0.0625 —0.3125 0.9375 0.3125

=0.3125 1.3125 —2.1875 2.1875

Figure 3 shows a 4-point prediction with the filter
coefficients matrix with p. Arrows indicate the compo-
nents used in the computation.
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Figure 3. Elements used in the computation of 4-point prediction.

2.3 Update

The update stage preserves all the polynomials of
order N—]1. To find the update coefficients, we first
initialize the integral-moment matrix m'e (NX L), where

L is the length of the signal. For N=4 at level j=0,

9

m = [(m) m] m) m} ] =

Lo N e
bttt
OO W= DD
Newwr—

Once all the moments have been initialized, the moments
corresponding to the A's have to be updated to preserve
the average at every level. The idea is that each 7

coefficient would give back to the A’s that were used to
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predict it as it received, and this amount is given by the
prediction coefficients [6].

1= mfpaze + D2 caihe,  £=0,1,2,3
109)
Assuming the signal length L=16, for ¢ =0,1,2.3,
(1) Case [ : mg; = m’z.!+pl.1+lm{
(2 Case B : ... mhy,yy

;
Mont2e

t= mrapt by s e
(3) Case W : mhyy5:= mhorg+n o119
@) Case V @ mrhy g := mhyigt iy s mls

Figure 4 shows the relationship between coefficients, sz,
on the moment update.

mg m, m;, my m, my m my oo
U u Pt2-097s PI3- o328
My ronis P14~ 00618
(a)Casc |
n.z-onu)m r‘\ P23 - 03623
m, m, my Mg Mg -t
{b) Case Il
eoMmy My My omy my My m m;
- ru»oxmw Pic-on2s
(c) Case 11l
T My my  myy Ry My My My, m
e - 022 P2~ Lazs! P2 m’w
(d) Case IV

Figure 4. Moments update.
To find the update coefficients for every 7, we solve an
equation:

["3‘;&—2 N méuz m%n-c]u{ = m&ﬂ?‘ (11)
(1) Case 1 : [m} m ol mlled = mi”
@) Case U : ... [m) mf m} mlud = mi” ..
iT

(3) Case M : [m} miy mly miJed, = mis

@) Case V : [m} mly miy mi)ed = il

Finally, we update A's based on #'s with the update
coefficients. For each 7,

Acjrsr=1 1= Aojper + wWa voia . 1=0,1,2,3
12
(D Case I : A_;; :=A;;4+uhgr-jo. i=0,1,2,3
(2) Case I :
A t= Aty v, i=0,1,2,3 ..
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(3) Case M :

Acjivg 1 =A-givat b 7-56 . i=0,1,2,3
@4) Case IV :

Acjiee '=A it e o1, i=0,1,2,3

2.4 Adaptive lifting

The prediction filter is designed so that it could
eliminate polynomials vp to order N—1, leaving only
high-order polynomials, Therefore, the predict stage is
equivalent to applying a highpass filter to the signal,
whereas the update filter preserves low-order polynomials.
However, if the signal doesn’t have the polynomial
structure, we would get large wavelet coefficients in
magnitude. To optimize the approximation of signals with
few wavelet coefficients, one could also construct
adaptive wavelet bases with liftings that depend on the
signal [8).

To represent the signal precisely, some (M) of the
prediction points ( ) are calculated to match the structure
of the signal. In other words, we trade off them against
the vanishing moments ( N— ). M points are used (o
adapt the prediction operator P to the signal which has
both polynomial and non-polynomial structure. At every
scale 5, we minimize the squared prediction eror with
the N—M degrees of freedom to find the best
prediction operator P [7]. The vector of prediction ermror
is then given by

e = X, X (13

where Py
predict, and X, _., . contains the neighboring even
samples used in the predict stage. Then we solve the
following minimization problem to find the prediction
coefficients
min , Ix,~X, Al  subjet o Eq. (7
(14)
Note that the objective function consists of the sum of

Xo gqqxpy 15 the odd L samples to

squared prediction emors e’e with the M polynomial
constrains. This problem could be solved using the QR
algorithm which could be found on [9].

II1. Denoising

Due o the concentrating ability of the wavelet
transform, the DWT has been successively applied for
noise removal. If a signal has its energy concentrated in
a small number of wavelet dimensions. its coefficients
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would be relatively large compared to any other signal
or noise that has its energy spread over a large number
of coefficients. This means that thresholding or shrinking
the wavelet transform would remove the low amplitude
noise or undesired signal in the wavelet domain, and the
inverse DWT sill then retrieve the desired signal with
little loss of detail [4, 10]. Because of good resolution in
the both time and frequency domain, better noise
separation with the wavelet transform other than with the
spatial-domain or frequency-domain filtering is possible.
In jI1], it has been shown that the denoising with the
wavelet outperforms  the  FFT-based
(frequency-domain) scheme when the input signal contains
sharp edge. Also, it has been found that the wavelet
denoising is effective in that although the noise is
suppressed, edge features are retained without much loss.
A drawback of the FFT is the fact that the edge
information is spread across frequencies because of the
basis functions not being locatized in time or space, and
hence the low-pass filtering results in the smearing of
the edge. The denoising steps are given by

transform

@ compute the DWT ¥ = Wy, where Wis the
wavelet transform matrix.

@ perform thresholding in the wavelet domain,
according hard thresholding

or according to soft thresholding

X = T(V.D = {58"3(1’)[(}|Y|—t), ll}};?: 16

where sgn(Y) is the sign value (-1 for negative and 1
for positive) of Y.
@ compute the inverse DWT 7z = W' X

For beiter denoising, we make use of the denoising
based on soft thresholding the DWT coefficients [4]. The
basis is adaptively changed according to the input signal
to represent the signal effectively and it is applied to the
DWT for denoising [7].

IV. Simulation

Four signats, Blocks, Bumps, Heavy Sine, and Doppler
[4] were tested for signal denoising. Each signal had
1024 samples and was corrupted by a white Gaussian
noise with the standard deviation 1, where the standard
deviation of the signals were varied from 5, 10, and 20.

In Table 2, the mean squared error (MSE) using
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Daubechies 8 (db8) as a basis and one with the adaptive
lifting are compared. We set N= N=4 and M=3 for
the construction of the lifting. Because of large wavelet
and scaling coefficients, we reduced the vanishing
momenis to N=N=2 and M=2 at the boundaries. At
only level 1, we found the optimized prediction coeffi-
cients using Eq. (14). The filter coefficients p; p3 and
D4 were obtained through the algorithm in Section 2.2
and fy was adaptively optimized based on Eq. (14).
According to the predict stage, the update coefficients
were modified. We have calculated MSEs 100 times for
each signal,

It is clearly seen from Table 2 that if the signal
contains sharp transitions causing large amplitude wavelet
coefficients, the adaptive lifting outperforms db3
because of the reduced vanishing moments. For Doppler,
our implemeniation of the adaptive lifting has shown to
be somehow unstable. Figure 5 shows a Blocks which
is denoised through the adaptive lifting. In Figure 6,
most of the noise is separated in the details D1 and D2,
The MSEs in Table 2 show that the adaptive lifting
performs nearly as good as db8.

Table 2. MSEs of signal denoising with different signals.
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Figure 5. Blocks : Adaptive lifting with the update changed.
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Figure 6. Approximation and details of the adaptive lifting
for Blocks.

V. Conclusions

In this paper, we have introduced the adaptive DWT
based on the lifting with boundary cases considered.
Using the lifting scheme it is particularly easy to adapt
the DWT to the signals. The adaptive lifting could
represent both smooth and edgy signal elements.

For good performance, the shorter wavelets are
requited in the neighborhood of singularities, whereas the
longer wavelets with more vanishing moments could
improve the approximation in regions where the signal is
more regular [8]. In terms of resulis, the adaptive lifting
becomes the Daubechies 6-like DWT when the signal
has singularities. In contrast, its performance is close to
Daubechies 8 when the signal is more regular, .

To achieve shott support and high order appro-
ximation, one may use multiwavelets which offer simulta-
neous orthogonality, symmetry, and short support. A
multiwavelet system could simultancously provide perfect
reconstruction  while presetving  length (orthogonality),
good performance at the boundaries(via linear-phase
symmetry), and a high order of approximation (vanishing
moments). This would be a good candidate for the
further research.

References

1. Gilbert Strang and Truong Nguyen, Wavelets and Filter
Banks, Revised Edition, Wellesley-Cambridge Press, 1997,

2. Wim Sweldens, “The lifting scheme : A custom-design
construction of biorthogonal wavelets,” J Appl Comp.
Harm. Anal, vol. 3, no. 2, pp. 186-200, 1996.

3. Wim Sweldens, “The lifting scheme : A new philosophy in
biorthogonal wavelet constructions,” Wavelet Applications in

The Journal of the Acoustical Society of Korea, Vol. 18. No. 1E (1999)

Signal and Image Processing 111, pp. 68-79, Proc. SPIE
2569, 1995,

4. D. Doncho, “De-noising by soft-thresholding,” /EEE Trans.
Inform. Theory, vol. 41, pp. 613-627, May 1995.

S. Ingrid Daubechies and Wim Seldens, “Factoring wavelet
transforms into lifting steps,” Preprint, Bell Laboratories,
Lucent Technologies, 1996.

6. Gabriel Fernandez and Senthil Peraswamy, “LIFTPACK : A
Software package for wavelet transforms wusing lifting,”
Wavelet Applications in Signa! and Image Processing 1V,
pp. 396-408, Proc. SPIE 2825, 1996

7. Roger L. Claypoole, Richard G. Baranivk, and Robert D.
Nowak, “Adaptive wavelet transforms via lifting,” in Proc.
IEEE Int. Conf. Acoust, Speech, Signal Processing '98, vol.
, pp. 1513-1516, 1998,

8. Stephane Mallat, A waveler tour of signal processing,
Academic Press, 1998,

9. G. H. Golub and C. F. V. Loan, Matrix Computations,
Johns Hopkins University Press, 1989

10. C. Sidney Burrus, Ramesh A. Gopinath, Haitao Guo,
Introduction to wavelets and wavelet transforms, Prenctice
Hall, 1998

11. Raghuveer M. Rao and Ajit S. Bopardikar, Wavele:

Transforms : Introduction to Theory and Applications,
Addison Wesley, 1998

AChang Soo Lee
Chang Soo Lee was bormn on March
27, 1972 in Suwon, Kyoungki, Korea.
He received the B.S. degree in
Electrical Engineering from Hanyang
University, Ansan, Korea, in 1997.
He is cumently a graduate student for
M.S. degree at Hanyang University,
Seoul, Korea. His current research
interests include digital signal processing, adaptive signal
processing, and the wavelet transform and its application.



Denoising Based on the Adaptive Lifting

AKyung Yul Yoo
: Kyung Yul Yoo received the B.E.
. degree in electrical engineering from
. Hanyang University, Korea, in 1982,
' the MS degree in electrical engine-
ering and the MA degree in
mathematics from the University of
Arkansas, USA, in 1987 and 1989,
respectively, He received the Ph.D.
degree in electrical emgineering from the University of
Missouri-Rolla, USA, in 1993.

From 1993 to 1995, he had been with the Electronic and
Telecommunications Research Institute (ETRI), Daejeon,
Korea, as a senior member of technical staff, and

P

involved in the development of digital communication
systems., Since 1995, he has been with the department of
electrical engineering, Hanyang University, Korea, as an
assistant professor. His current interest include statistical
signal processing, wavelet, and adaptive filtering
application.

19



