FFAHA B =FA A4A ALE (99.3)

A Specifying Method for Real-Time
Software Requirement

Jung-sool Kim®

8 9 o] =F& ML AZEele] 8F MG HF FIolth o] WL UA ST He
A FEeE TNPN(Timed Numerical Petri Net)S AMEshed, Alde)l AEAE A3 RTTL(Real
Time Temporal Logic)oll 7|2tk TNPNS 9] HAdol2A AHeEE, 2 P99 FF4de RTILE ¥
dded, 294 JH=E T3 ENEACE 2AM AMgAs Alade) Trb aFaRle] 2 gEd:
THEY Mz=go] 1 Falo] ARk YA, /A, A2, $AENB AFHUG £ o]
FEE Ad2YA AAS €t

Abstract This paper is on the analysis for the real-time software requirement. This method can be
used for TNPN(Timed Numerical Petri Net) as a easy commumication means with real-users. It is
based on the RTTL(Real Time Temporal Logic) for correctness of the system. TNPN is used to
represent a behavior specification language, the validity of specified behaviors in TNPN is expressed in
RTTL, and analyzed through the reachability graph. Thus, the requirement between user and system is
satisfied. Using the example of shared track, the validity of the property of real-time(safetiness,
responsiveness, liveness, pricrity) is verified. Also, this framework is given to connection with a object,

natually.

1. Introduction

In general, the correctness of real-time systems
depends not only on the logical result of the system
behavior, but also on the time at which the results are
produced(stankovic,1988).

Typical applications include process control, flexible
manufacturing systems, robotics, avionics and
embedded real-time computer systems. Real-time
systems composed of interacting processes share

the following characteristics(ostroff,1990).

(1) Event occur at discrete times and states have
discrete values. -

(2) Processes are event-driven rather than clock
driven.

(3) Processes are typically nondeterministic.

* Yeungnam university Dept. of Computer Science and Engineering

(4) Interaction and communication between processes
may be synchronous or asynchronous.
(5) Hard real-time deadlines must often be met.

2 PLACE 1

[TC]
TO

CT

- PLACE 2

(Fig.1) Arch. of basic TNP

The difficulty of modeling real-time systems has
long been recognized in software engineering. As a
result, a variety of methods have been proposed for the
modeling of real-time systems. Although there is a
growing theoretic studies on real-time systems, little
work has been done on hard real-time systems, ie,

systems that are guaranteed to meet timing deadlines
(reed(1986), wirth(1977)). So, this paper describes
TNPN/RTTL(Timed Numerical Petri Net/Real Time
Temporal Logic) framework and provides example for
illustration. TNPN is used to represent a behavior of
system and RTTL is the assertion language for
specifying behavior and verifying that the TNPN
satisfies the required properties of real-time systems.
Verification is performed by reachability graph of
global states. In this paper, we confine the scope of
system to finite systems.(ostroff,1989,1990)

2. Related Research

(1) Programming Language : Real-time programming
languages suffer from the lack of an abstract
mathematical model. As a result, the designer is faced
with uncertain semantics, and thus the lack of analysis
capabilities(wirth,1977).

(2) Petri Nets : Petri nets nicely model concurrency
and nondeterminism, but do not represent numerical
information such as data in a message header, time out
information, and message sequence numbers found in
complex communication protocols. In fact, there is no
generally accepted high-level specification language for
petri nets, and properties such as net invariance and
freedom from deadlock are expressed in diverse and
sometimes unrelated

formalisms. (billington(1988),murata(1989),pe._terson(1931)

(3) Structured Methods : Structured methods(gomaa,
1984) for real-time systems originated in systems
analysis methods used in industry area. These methods
have no formal semantics, there is no support for
formal verification. So, nondeterministic plant behavior
can not suitably modelled.

3. TNPN/RTTL
3.1 Syntax Definition of TNPN

A TNPN M of M is a four-tuple given by M =
(V,T,SE). Vis a set of vanables. T is a finite set of

transitions, S is a finite set of states, E is a set of all
events. here, T2 ri = (Ssource, E, C, A, Sdestination).
See the Fig.l.

3.2 Semantics Definition of TNPN

Given an TNPN M with state-space S a trajectory
is any path in the state-space consisting of an infinite
sequence of state and transitions. The set of all
trajectories of M is denoted Sw. Not all trajectories
represent possible behaviors of M(denoted X). The set
of legal trajectories of M contains just those
trajectories that are possible behaviors(ZESw). All
necessary information is collected into a 5-tuple called
a generator of trajectories. GM = (GV, R, GS, GT,
init), here, GV(all variables) = Vi U TSi U {ni, ti, I,
TEi, SAi}, V is called the variables set, TS(Token
State) is a current state in system, ni is next
transition variable with type(n) = T, t is time integer,
IE is a set of internal event, ie € IE = {event,
ON(state), OFF(state)}, TE is set of event not exceed
time after event, te € TE = (te(event name, remaining
time)), SA(scheduled action), sa €SA = (action name,
remaining time), R is the union of all types and is
thus the range of all values that variables in V can
have. GS is the set of all states, GT is the set of all
transitions, gr = (e, er, hr, 1r, ur), 1< ur.
here, a is occuring event, € is enabling condition, h is
a transform funtions, 1 is lower time for transition, u is
upper time. init is the set of initial states, ie. sO(n) =
initial.

This is a definition on the global state transition
(ko,19%)allowing in this paper.

« simple state transition
Simple transition is composed of g = (a,ehlw for
r = (SsECASA). It sames as the general petri net.

+ join state transition
rl .. rn is followed figl. It allows for petri net's
join property.

- conflict state transition
This transition is sames as petri net's conflict
transiton.

+ initial state transition

This is satisfied with initial or reboot in system It
expressed as « nit, e TRUE, gr=
(TRUE, TRUE,[,0,0)

- tick state transition .

The clock ticks infinitely often, there are an infinite
number of states S in initialized trajectories.

tick = (tick, TRUE[t:t+1],0,00).

+ timeout state transition
It expressed as a= TRUE, e= timeouevent(to) when
any event has exceed time. -

+ scheduled action state transition
It expressed as @= TRUE, e= scheduled(sa) when
time = 0.

- terminate state transition

It is satisfied with when system arrive terminate
state. In this paper, we can use initial or terminate
transition implictly.

The transform function h of transition rwhen
applied to state-assignment{l] q vyields a set of
successor state assignments. In this paper, we
introduce state assignment(Q (V-{n)) and state
map(Sm = (V-{n,t}). state map is availables to draws
reachability graph. Transform function h is defined
belows in each basic behaviors, ie event, action.
Basical transform representations is as follows.

. h{@) in behavior E = {¢JEIEU{E}}

. h(@) in behavior ON(s) = {qtstsU{s}), IE
:U{ON(s))}

. h(g) in behavior OFF(s) = {qtsts-{s},IE
:U{OFF(s)}}

. h(g) in behavior TRUE(c) = {q,c:TRUE,
IE: IE U {TRUE(@}}

. h(q) in behavior FALSE(c) = {q,
¢FALSEIE IE U {FALSE(c)})

. h(q) in behavior TOet) on E = {q TE
TE U {[TOlet),t]}

. h{@) in behavior TO(et) on t = {q,TE
TE-{[TOet),tt-11}, IE: IE U {TOe,)}}

. h{g) in behavior SA(at) on a = {q,SA:

SA U {SA@h}

. h{q) in behavior SA(at) on t = {q,SA
SA - {[SAG@rt-1]a}}

. h{g) in behavior tick = {qt: t+1, SA:SA
~ (x1),TE : TE - (+1)}

3.3 Legal trajectories

Let S be the state space of an TNPN. A trajectory
o = S0SIS2 .. = init—q0 gr0—ql grl—q2 .. The
notation init—q0 g r0—ql gr1—q2 .. for a trajectory
is often preferred as it allows us to picture a trajectory
as a sequence of state assignments with transition
taking us from one state assignment to the next. The
legal trajectory set XM is the set of all initialized
trajectories of M together with all suffixes of initialized
trajectories. An initialized trajectory ¢ satisfying the
following requirements. (a) initialization : The state SO
€ init, and initial never occurs again in o. (b)
succession : For each i, if si(n) = r, then si(e) = true,
gitl € h(gi). (c) ticking. (d) upper time, lower time
bound(ostroff(1989,1990)).

3.4 Reachability Graph for TNPN

Earlier we have defined a finite state in this system.
So, these finite global state TNPN has a finite
reachability graph. To reachability graph, we have
introduced a state mapping Q. Reachability graph RG =
(QE), Q is a all global state, E is a set of global state
transition component. So initial state map, it is
defined follows.

init = { state s : s(init) = true }, and if a state
mapping is a node of the RG, RG(g) is defined as
follows.

node(RGlg)» : (@} U {@’ € node(R®) | q is reachable
state from q},

edge(RG(Q)) : ((gs,g r_setad) € edge(RQ) | gsad €
node(RG{(q))}, and the algorithm for RG is presented as
follows.

WHILE there is a reachable node in node(RG) DO
check factor SAi € gs in initial state gs(s=0).
if (SA =) then {at g0, find er
same as TS component in GT }

{find IE component in Q equals to
fined g r component}
{fined component qi assign to next
state input}
else {compute t of sa(at) in qi}
{oceurs tick transition as
much as t}
if (t = 0) then {find IE equals
to "a” of SA(at) in GT}
{fine IE equals to fined IE
in Q, assign to next
state input}
endif
endif
endwhile

4. Applying example

Consider a object which consists of two diesel trains
which share a common section of railway track. On
the shared track, there is a diesel pump for refuelling
the trains. To prevent the potentially disastrous
situation of two trains simultaneously entering the
shared track, two traffic lights have been installed. See
the Fig.2.

(Fig.2) shared track system

(1) syntax definition

Mst = (V,T,SE)

V = all variables

E = {wait, enter, connect, pump, pumped, disconnect,
exit}

S = {ST, trainl, train2, pump, travel, wait, shared
track, pump connect, pump disconnect, off, connecting,
pumping,}

T={7071,r21737r4,151761:7,:8

r0 = (initial, true, true, &)

r1 = (travel, wait, wait, true, move())

r2 = (wait, shared track, enter, true, move())

73 = (shared track, punp connect, connect, true,
connect())

74 = (pump connect, punp disconnect, disconnect,
true, disconnect())

5 = (pumpdisconnect, travel, exit, true, move())

76 = (off, connecting, true, pump)

t7 = connecting, pumping, pump, true,
SA(pumped,d(r,2r))

r8 = (pumping, exit, pumped, true, disconnect)

(2) semantic definition

Gst = {GV, R, GS, GT, init}
GV = {TS, n, t, IE, TE, SA}
R = {power(TS) U power(IE) U power(n) U
SA U t}

TS = {travel,wait,shared track, pump, connect, pump
disconnect, off, connecting, pumping}

IE = {on(travel), on(wait), on(shared track), on(pump
connect), on(pump disconnect), on(off),
on{connecting), on{pumping), off(travel),
off(wait),off(shared track), off(pump connect),
off(pump disconnect), off(off), off(connecting),
off(pumping), connect, purmp, purnped,
disconnect, sa(pumped, d(r,2r)}

SA = {(pumped,d(36)), (purmped,d(4,6)

(pamped,d(5,6) , (pumped,d(66)}
n={7071,72713174175:6,77:8

t=1{012 .. o}
GS = {TSRETS), IER(E), TE @, SAR(sa),
n:R(2n), tit}

init = (TS:{trave, off), IE@, TEB, SA', n: 0, £0}
GT =1{gr0,grl, gr2 gr3 gr4, grd gr6, g7,
g8
g0 = (true, true, [TS:{travel, off}, IE : {on(travel),
on(off)}, 0, 0]
g7l = (wait, on(travel), [TS:TSU{wait} - {travel,
IE : IEU {on(wait), off(travel)}, 0, 1]
g2 = (enteron(wait), [TS:TSU{shared track} -
{wait}, IE : IE U {on(shared track),
off(wait)},0,1]
g3 = (connect, on(shared track), [TS:TS U{pump
connect} - {shared track}, IE :IE{on(pump

connect), off(shared track)},0,1]

g 4 = (disconnect, on(pump connect), [TSTSU
{purmp disconnect) - {pump connect},
IE : IE U {on(pump disconnect), off(pump
connect)},0,1]

g5 = (exiton(pump disconnect), [TS:TSU
{travel}-{pump disconnect}, IE: IEU
{on(travel), off(pump disconnect)},0,1]

g 76 = (connect, on(off), [TS:TS U{connecting}-
{off},IE : IEU{on(connecting), off(off)},0,1]

g ¢ 7 = (pump,on(connecting), [TS'TS U{pumping} -
{connecting}, IE:TEU{on(pumping), off(
connecting)},SA:SA U {purmped, d(r,2r),0,3]

g 8 = (pumped,on(pumping),[TS: TS U{off} ~
{pumping}, IEIEU{disconnect,on(off),off(
pumping)},0,11

g t9 = (true,scheduled_action(sa),[IE : IEU{pumped}
01]

(3) reachability graph

RGst = (QE)
Q = {q0.a1,q2,a3,04,45,a6,97,a8,09,q10,q11}
q0 = (TS:{travel,off), IE:{on(travel),on
(off)}, TE:D, SA: @)
al = (TS:{wait,off}, IE:{on{wait),off
(travel)}, TE 2,SA:2)
a2 = (TS:{shared track,off} IE:{on(shared
track),off(wait), TE: @ SA: &)
a3 = (TS:{pump connect,connecting}, IE:
{on{purmp connect),on(connecting)
Joff(shared track),off(off), TE: &
SA: D)
a4 = (TS : {pump connect, pumping},
IE:{on(purmping),off(connecting)}
TE @ SA{(pumped) d(3,6)})
@5 = (TS : {pumpconnect,pumping}, IE:
2, TE &, SA{(purmped),d(4,6)})
@6 = (TS:{pump connect,pumping} ,IE:
2, TE: &, SA:{(pumped),d(5,6)})
q7 = (TS:{pump connect,pumping} IE:
2, TE @, SA{(purnped),d(6,6)})
a8 = (TS:{pump connect,purmping},IE:
{pumped}, TE: &,SA: @)
a9 = (TS:{pump connect,off} IE:{on(off),
off(purmping)}, TE: @,SA: &)

ql0 = (TS : {pump disconnect, off}, IE:
{on(pumpdisconnect),off(pump
connect)}, TE: @,SA: &)
qll = (TS : {travel, off}, IE : {on(travel)
off(pump disconmect)}, TE: &, SA: &)

E = {e0el,e2e3,e4,6566,67,e8,e9el0el1}
€0 = (null, gz0, q0)
el = (q0, g71, ql)
e2 = (al, gr2, q2)
e3=1(q2 gr3ll g6, a3
ed = (g3 gr7, @b
&5 = (g4, grtick, go)
&6 = (g5, g rtick, gb)
€7 = (b, g rtick, q7)
e8 = (g7, g7z9 a8®
9 =(q8 gr8 ¢9)
el0 = (g9, g 74, ql0)
ell= (q10, g5, qll)

(4) Property of real-time software

. Safety : Both trains may not simultaneously use the
shared track. It is express in RTTL as follows. It
sames as semaphore. See the figure 4.

true — [TStrainl(travel Vv wait) V
(TStrain2(wait V travel))

Train1 Train2

{Fig.4) Concurrent Train with mutual exclusion

. Priority : If one of the trains has been allowed to use
the shared track, then the currently waiting train must
have first priority to use the shared track once the
track is vacated. It is expressed as follows.

(Fg-3) Reachability graph of ST

(n = @l A TStmanl(wat) — O =e2
Pn=al)
n = @2 A TStmain2(wait)) — O =el
Pn= a2

. Response : No train should be allowed to remain in
shared track longer than 2r ticks of the clock. It sames
as dead line in transition.
(TStrain(pump commect) A t = T)
— & (TSpump(pumping) A t < T + 2r).

. Liveness : the clock is often infinitely. It same as the
response property in that the clock flows.

5. Conclusion

In this paper, we present a specifying method for
real-time software requirement. This framework can be
used for TNPN(Timed Nurnerical Petri Net) as a easy
communication means with a real-users. It is based on
the RTTL(Real Time Temporal Logic) for correctness
of the system. So, it will be lead to compensate for
trade off relation{easy and cormrectness)in complex
systems. And we present reachability graph algorithm
for behavior analysis. So, we verified the properties of
the real-time satisfied with the behaviors of TINPN.

References

[1] Billington,J., et al, "PROTEAN : A High-level Petri
Net Tool for the Specification and Verification of
Communication Protocols”, |IEEE Trans. SE, vol 14,
No3, pp.301-16, March. (1988)

[2] GM.Reed and AW.Roscoe, "A timed model for
communicating sequential processes”, in Proceedings
ICALP 86. LNCS 226. NewYork : Springer-Veriag,
(1986)

[31 Gomaa, H., "A Sofiware Design Method for
Real-time Systems”, CACM, vol 27, sep, pp.938-949,
(1984)

[41 JAStankovic, "Misconceptions about reat-time
computing”, IEEE computer, vol
21, pp.10-19, Oct. (1988)

[5] J.S.Ostroff, "A logic for Real-Time Discrete Event
Process”, |EEE control systems magazine, pp35-102,
June. (1990)

[6] J.S.Ostroff, "Tempora! Logic for
Systems”, research studies press. (1989)

Real-time

[71 Ko,G.l. and KangK.C., "A Formal Method of
Specificaton and Verification of Real-Time Properties
in Statechart”, POSTECH/CS/SE-94-TR-8, Dept. of
CS, Postech, (1994)

[8] Murata.T, “"petri nets:properties, analysis and
applications”, Proceeding of the IEEE, vol.77, No4,
pp.541-580, April. (1989)

[9) NWith, "Towards a discipline of real-time
programming”, CACM, vol.20, Aug. (1977)

[10] Peterson,J., "Petri Net Theory and the Modeling
of Systems”, Prentice-Hall, (1981)

