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ABSTRACT

This study examined those problems noticed under the Asymptotically Generalized Least Squares
estimator in evaluating a structural model of physical health. The problems were highly correlated
parameter estimates and high standard errors of some parameter estimates. Separate analyses of the
endogenous part of the model and of the metric of a latent factor revealed a highly skewed and
kurtotic measurement indicator as the focal point of the manifested problems. Since the sample sizes
are far below that needed to produce adequate AGLS estimates in the given modeling conditions, the
adequacy of the Maximum Likelihood estimator is further examined with the robust statistics and the
bootstrap method.

These methods demonstrated that the ML methods were unbiased and statistical decisions based
upon the ML, standard errors remained almost the same. Suggestions are made for future studies
adopting structural equation modeling technique in terms of selecting of a reference indicator and
adopting those statistics corrected for nonormality.

I. INTRODUCTION

The maximum likelihood (ML) method has
been predominantly used in estimating
structural equation models. The ML method
chooses best estimates maximizing the likelihood
that the discrepancy between estimates and
observed covariances could have arisen as a
mere sampling fluctuation (Hayduk, 1987). The
ML estimators hold desirable asymptotic
properties in large samples. In particular, they

* This is a part of dissertation at the University of Michigan,

are unbiased, consistent, and efficient by having
a smaller sampling variance than any other
estimation (Bollen, 1989; Long, 1983). Another
advantage is their approximately normal
distribution, and this nature leads to a
significance test of each parameter estimate
based on the z-distribution (Bollen, 1989).

The ML method assumes multivariate normal
distribution of the observed variables. The
multivariate normal distribution further assumes

that each variable has zero skewness and zero
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kurtosis (Anderson and Gerbing, 1988). The
effects of violating this multivariate normal
assumption are still not very well understood.
Cuttance (1987), summarizing the studies on
this issue, states that ML parameter estimates
are ‘“relatively robust against skewness for a
wide range of applications in the social and
behavioral sciences” (p. 268), where robustness
refers to the degree of producing valid estimates
and inferences by the model under violations of
the methodological and statistical assumptions.

When the data set includes severely skewed
or highly kurtotic variables, Cuttance (1987)
recommends the asymptotically distribution-free
(ADF) method. In the same line, Bollen (1989)
suggests estimating the model with both the
ML and the ADF methods and comparing the
results when a significant kurtosis occurs in the
data set. Following these suggestions, 1
estimated the proposed model with a second
method, the Arbitrary Generalized Least Squares
(AGLS), which is one of the ADF estimators.
While the AGLS method relaxes the
multinormality assumption, it is computationally
demanding (Anderson and Gerbing, 1988:
Bollen, 1989: Satorra, 1990) and lacks robustness
when sample size is small to moderate (Satorra,
1990). Hence, the AGLS method should be
cautiously applied to take advantage of its
nature of asymptotically distribution-free. In the
present study, I report the problems noticed
under the AGLS method for evaluating a
structural model of physical health and
investigate those problems for the underlying
reasons. [ then examine the adequacy of the
ML estimates that were chosen as the primary
estimator in evaluating the model.

II. STATEMENT OF THE PROBLEMS

1. Model Specification

The present study adopts three dimensions of
physical health as the constructs of the
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proposed model, Figure 1 illustrates the proposed
model of physical health. The model is
composed of four latent exogenous (€s, xis) and
three latent endogenous factors (%s, etas). The
#s (phis) are covariances between the latent
exogenous factors. The PBs {(betas) and the s
(gammas) refer to structural coefficients, which
represent direct effects between etas and
between xis and etas, respectively. The {s
(zetas) denote the residuals in the structural
equations. The xs and ys are observed
indicators. The As (lambdas) are the factor
loadings of the observed indicators on the latent
factors, The Os (deltas) and the €s (epsilons)
are the measurement errors for the observed
indicators the xs and the ys, respectively.

Their corresponding variances and covariances
are denoted by 6, 's (theta sub deltas) and &, 's
(theta sub epsilons).

The %, is “chronic condition.” 7, is “functional
limit,” and %, is “self-evaluated health.” Each of
these constructs, respectively, represents the
medical, functional, and self-evaluative
dimensions. Chronic condition is measured with
health problem (yl). Health problem has three
categories such as (1) experience of no health
problem, (2) experience of only health problems
not affecting daily activities, and (3) experience
of only health problems affecting daily activities
or of both types. Functional limit and self-
evaluated health have two indicators each:
ADL (activities of daily living, y,) and IADL
(instrumental activities of daily living, y,) for
the former factor and evaluated health (y,) and
compared health (ys) for the latter one. ADL is
the composite of subject's ability for eating,
dressing, grooming, walking, in/out of bed, and
bathing. Those activities such as getting to
places, shopping, and handling money comprised
IADL. Evaluated health is operationalized by
subject’s feeling about present health with 5
categories: (1) bad, (2) fairly bad, (3) average,
(4) fairly good, and (5) very good. As for
compared health, each subject compared health
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with others of his or her own age with
response categories of (1) worse, (2) about the
same, and (3) better.

As sociodemographic factors, &, is “age,” &, is
“gender,” &, is “education,” and &, is “marital
status.” These factors are also measured with
relevant single indicators. Age and education
are operationalized by the actual age in years
and the number of school years attended,
respectively., Both gender and marital status
have 2 response categories: (1) man and (2)
woman for gender and (1) unmarried person
and (2) married person for marital status.

In handling those single indicators, some
parameters need to be constrained in order to
achieve model identification. For the
endogenous part of the model, both the factor
loading (A,,) and the measurement error
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<Figure 1> Proposed Structural Model of Physical Heaith
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2. Problems under AGLS Estimation

The data set for model evaluation comes
from the “Aging in the Western Pacific Study”
(Andrews, et al., 1986). The samples were
selected from the noninstitutional populations
aged 60 and over in Peninsula Malaysia. The
total sample size for the present anaysis is 970
elders and they were randomly divided into two
subsamples for replication, which leads to a
check on conclusions derived from a significance
test and further insight into the variability of a
result (Finifter, 1972). The two subsamples
(475 elders for the Sample 1 and 495 elders for
the Sample 2) are very similar to each other in
the distributions of age, gender, education, and
marital status.

Regarding descriptive statistics for the
indicators, ADL has very large, positive
skewness (ranging from 694 to 7.46) and
kurtosis (ranging from 3.74 to 7.27) in the
samples. The majority of the subjects have no
limit in ADL. Education has a skewed (ranging
from 198 to 2.32) and kurtotic (ranging from
3.74 to 7.27) distribution.

Replications of the model with the AGLS
method produced two types of problems in the
samples. These were: (1) high correlations of
parameter estimates and (2) high standard errors
leading to insignificance of some estimates with
large magnitudes. With regard to the first
problem, some of the correlations of parameter
estimates were greater than .90 in absolute
values, signifying an identification problem
(Bentler, 1989: Hayduk, 1987: Joreskog &
Sorbom, 1989). Those highly correlated parameter
estimates were particularly related with functional
limit (7,). The second problem of high standard
errors was found in the factor loading (As) of
IADL in the Sample 1 and the residual error
variance (¥..) of functional limit and the
measurement error variance (8,.) of ADL in all
the samples. These parameter estimates had high
magnitudes ranging from 653 to 970 in their
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standardized forms. Yet, their standard errors
were foo high to reject the null hypothesis at the
05 level, suggesting that these high values are
not significantly different from zero.

. METHODS

The apparent problems were investigated
with two major strategies: they were to
examine the endogenous part of the model and
to change the metric of functional limit (7.).
The former strategy shows whether the
endogenous part is the problematic area of the
model by excluding the influence of the
exogenous part. Based upon the result of the
former strategy, the metric of functional limit
was changed by changing its reference indicator
with IADL. which is much less skewed and
kurtotic than is ADL, the orginial reference
indicator. Since the AGLS method turned out
to be improper for the present data set, the
adequacy of the ML method which was taken
as the primary estimator was assessed with the
robust statistics including Satorra-Bentler scaled
test statistic and robust standard errors. The
bootstrap method was further adopted to clarify
some ambiguities found in the robust standard
errors, These procedures were performed using
EQS and LISREL programs,

IV. RESULTS and DISCUSSION

1. Comparisons of the Full and Endogenous
Models

Examining only the endogenous part of the
model by separating from the full model would
narrow down the problematic areas by isolating
the effect of the exogenous part. This approach
is reasonable in view of the concentration of the
AGLS estimation problems on the endogenous
part. Under the AGLS method. the correlations
between the factor loading (A;) of IADL and

the residual error variance (¥.) of functional
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limit were greater than 95 in the endogenous
model in all the samples. On the other hand,
the corresponding correlations of the ML
estimates in the endogenous model were high,
but lower than 90 in most cases.

The problematic AGLS coefficients, the
standard errors. and their z-statistics were also
compared between the full and endogenous
models (Tables 1). The residual error variances
(Z,) of functional limit in the endogenous
mode! were consistently larger than those of the
full model because of fewer explanatory
variables for functional limit (7,) in the
endogenous model. Yet, their greater z-statistics
indicate smaller standard errors than those in
the full model in proportion to their respective
coefficients. These smaller standard errors than
those in the full model were also found in other

<Table 1> AGLS Estimates of Fuii and Endogenous Models

problematic estimates such as the factor loading
of IADL and the measurement error variance of
ADL.

Accordingly, all the problematically
insignificant estimates in the full model turned
out to be significant in the endogenous model
with one exception, which was the residual
error variance (¥,) of functional limit in the
Sample 2. However, its z-statistic (1.88) was
close to the 1.96 cutoff point for statistical
significance.

Based upon the disappearance of
problematically insignificant AGLS estimates
in the above, it is speculated that the
introduction of the exogenous part of the
model have produced some strain in the
estimation. This speculation, however, is not
sustained because of the appearance of very

Sample 1 Sample 2 Full Sample

Items Ful! Endog? Full Endog Ful ©  Endog
A, Factor loading of JADL

Coefficient (standardized) 970 795 883 816 933 803

Coefficient (unstandardized) 9,055 1.733 7.194 2.698 6.472 2.069

Standard Error 4.858 419 2.851 707 2.328 265

z-statistic 1.864 4136 2523 3.816 2.780 7.808
¥,, Residual error variance

of functional limit

Coefficient (standardized) 757 .900 707 .886 748 895

Coefficient (unstandardized) 013 324 016 137 025 221

Standard Error 012 161 012 073 015 083

z-~statistic 1.083 2012 1.333 1.877 1.667 2.663
f¢,, Measurement error variance

of ADL

Coefficient (standardized) 653 .692 797 706 714 715

Coefficient (unstandardized) 032 809 091 370 082 622

Standard Error 101 .243 078 136 085 148

z-statistic 317 3.329 1167 2721 965 4.203
I Full model

2 Endogenous model: a model consisted of the endogenous part of the full model.
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high correlations of the AGLS estimates in
the endogenous model estimatfion. That is, an
identification problem noted under the AGLS
estimator was apparent even before bringing
in the exogenous part into the model. Adding
the exogenous model contributed to exposing
embedded in the
endogenous model in the present analyses,

estimation problems

This was, perhaps, caused by increased strain
in the model through the added complexity
from the exogenous model. Therefore, the
problematic areas can be localized to the
endogenous part of the model.

2. Change of the Metric of Functional
Limit

Within the endogenous model, the problems
with the AGLS estimation revolve around
functional limit (#,). In the model specification, a
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unit change in functional limit is scaled to be the
same as a unit change in ADL, which has very
high skewness and kurtosis in the samples. Hence,
we need to see the findings when the metric of
functional limit (#.) is constrained to be the same
as that of IADL (y,). which is much less skewed
(ranging from 152 to 161) and kurtotic (ranging
from 164 to 2.07) than is ADL (y.). These
findings are presented in Table 2.

When IADL (y;) was used as the reference
indicator for setting the metric of functional
limit (7.). the AGLS estimator produced no
correlations of parameter estimates greater than
90 in any of the samples, Instead, all the
correlations of parameter estimates greater than
90 under the original metric of functional limit
fell below .60, Thus, the identification problem
which was manifested through high correlations
of estimates disappeared under the new metric
of functional limit.

<Table 2> AGLS Estimates with Different Metrics of Functional Limit

Sample 1 Sample 2 Full Sample
Constrained Constrained Constrained
Items ADL IADL ADL IADL ADL  IADL
A A Factor loading of IADL ADL 1IADL ADL IADL ADL
Coefficient (standardized) 970 588 883 451 933 535
Coefficient (unstandardized) 9.055 q11 7.194 140 6,472 154
Standard Error 43858 059 2851 055 2.328 056
z-statistic 1.864 1.881 2.523 2545 2.780 2.750
7., Residual error variance
of functional limit
Coefficient (standardized) 757 757 707 707 748 748
Coefficient (unstandardized) 013 1.070 016 851 025 1.028
Standard Error 012 411 012 317 015 .264
z-statistic 1.083 2.603 1.333 2.685 1.667 3.894
fe,, Measurement error variance of ADL
Coefficient (standardized) 653 654 797 796 714 714
Coefficient (unstandardized) 032 033 091 092 082 082
Standard Error 101 101 078 078 085 085
z-statistic 317 327 1.167 1.179 .965 .965
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With regard to the problematic AGLS
estimates with high standard errors, their
standardized coefficients remained the same
across the samples. The large, yet insignificant,
residual error variances (¥,) in all the samples
became significant, exhibiting reasonable
statistical decisions for their large magnitudes.
When the ML estimator was applied, the new
metric of functional limit produced almost the
same z-statistics of the residual error variance
(¥,,) in the samples.

The z-statistics of the factor loading (4) and
the measurement error variances (fe,) of ADL
were nearly identical between the two metrics of
functional limit, providing the same statistical
decisions. Since the measurement error variable
(e,) of ADL has no linkages to any other
component in the model, no changes occurred in
its error variances (fe,). The unchanged feature
under the new metric basically emanated from
unchanged distributions of ADL in the samples.

These findings reveal that the metric of
functional limit (%,) based upon ADL(y,) was
responsible for the problems of the high
correlations of parameter estimates and the
insignificant residual error variances ( ¥,) noted
under the AGLS method. Remaining problems
with the factor loading (4,,) and the
measurement error variances (f,,) of ADL
confirm the extremely kurtotic distribution of
ADL (y.,) as the focal point of the problems
noted in the AGLS estimation.

3. Adequacy of Maximum Likelihood
Method

Since the AGLS method turned out to be
improper for the present data set, the adequacy
of the ML method which was taken as the
primary estimator remains to be assessed. This
is more so because the present data set did not
satisfy the multivariate normality assumption for
the ML estimator. The ML method is known
to be robust against a certain violation of the

multivariate normality assumption. Yet, it is not
clear whether the degree of departures of the
indicators from normality in the present data
set could produce correct x° statistics and
standard errors. In order to examine this issue,
robust statistics under the ML estimator were
obtained through the EQS program. The
examination further included the bootstrap
method to clarify some ambiguities found in the

robust standard errors,

1) The Robust Statistics

The robust statistics include both “Satorra-
Bentler scaled” test statistic (“scaled test
statistic” in the following) and robust standard
errors, According to Bentler (1989), the test
statistic is “designed to have a distribution that
is more closely approximated by & than the
usual test statistic” (p. 47) and the robust
standard errors are correct in large samples
even if the distributional assumption is violated.

The z-statistics of the free parameter
estimates derived from the ML standard errors
and from the robust standard errors were
compared for the samples, In particular, the
standard errors of the variances of gender and
marital status became very small. Their z-
statistics (the robust standard errors) of the
variances range from 30 (.033) to 77 (.013).
Since these standard errors approaching zero
may reflect an estimation problem rather than
high precision (Bentler, 1989), those very small
values of the robust standard errors need to be
taken with caution. These ambiguities from the
robust standard errors will be examined in the
following section.

Tables 3 shows the estimation from ML and
robust methods of the problematic estimates
under the AGLS method. The z-statistics
derived from the robust standard errors were
consistently lower than those from the ML
standard errors, indicating that the ML method
underestimated their standard errors. The z-
statistics derived from the robust standard errors
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<Table 3> Estimates from ML and Robust Methods

Journal of Korean Academy of Nursing Vol 29, Nob5

Sample 1 Sample 2 Full Sample

Items ML ROBUST ML ROBUST ML ROBUST
A, Factor loading of IADL

Coefficient (standardized) .980 892 940

Coefficient {unstandardized) 2575 3142 2.830

Standard Error 449 663 .509 .966 342 559

z-statistic 5.735 3.884 6.173 3.253 8275 5063
¥,, Residual error variance

of functional limit

Coefficient (standardized) 757 711 741

Coefficient (unstandardized) 188 097 139

Standard Error 041 097 .021 .052 .022 052

z-statistic 4585 1.938 4619 1.865 6.318 2673
8¢, Measurement error variance

of ADL

Coefficient (standardized) 792 789 714

Coefficient (unstandardized) 951 511 730

Standard Error 072 309 038 148 039 174

z-statistic 13.208 3.078 13.447 3453 18,718 4.195

Chi-square Test statistics 27.29 26,72 15.76 16.0 36.80 35.90

Probability .004 005 150 141 .000 000

conclude statistical significance except for the
residual error variance (¥,) of functional limit
in the Sample 1 and in the Sample 2. Yet,
their z-statistics (1.94 and 1.87) were very close
to the 196 cutoff point at 5% significance level.

Given these differences in the estimated
standard errors, it is important to know whether
other statistical tests for the ML estimates
could be sustainable when using robust standard
errors, Comparisons of a z-statistic for each
parameter estimate in the model revealed that
the statistical decisions from the ML standard
errors and robust standard errors did not change
in most estimates for all the samples, In
addition to the residual error variance (¥,) of
functional limit mentioned above, there were
two exceptional estimates, The estimate of the
effect (y;) of education on functional limit

became insignificant with its robust standard
error in the Sample 1. In this exception, the z-
statistics of the insignificant estimates were
close to the 1.96 cutoff point. In terms of the
overall fit of the model, the scaled » values
were generally smaller than the x° values
derived from the ML estimator. Yet, these
changes led to few changes in the significance
level through the p-values, indicating the
improvements in the #* values were nominal,

2) Application of the Bootstrap Method
Very small values of the robust standard
errors of gender and marital status mentioned
above may indicate either a high precision in
estimates or some noise in estimation,
Accordingly, the accuracy of the standard errors
obtained from the ML method remains to be
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answered, The bootstrap method was adopted
in order to handle these issues.

As a general methodology to answer the
accuracy of an unknown parameter estimator
(Efron and Tibshirani, 1986), the bootstrap
generates standard errors and confidence

intervals "that are typically better than
alternatives that rely on untested assumptions”
(Stine, 1989). The bootstrap does not assume a
particular distribution of the variables, while it
assumes comparability between the bootstrap
sampling distribution of the estimates and the

<Table 4> Unstandardized Free Parameter Estimates and Standard Errors from ML, Robust, and

Bootstrap Methods for the Full Sample (N=970)

Original ML Robust’ Bootstrap®
Parameters Estimate SE? SE Avg. Est’ SE
Variances of the
latent exogenous factors (¢s)
#. Age 1.000 049 056 1.000 003
$., Gender 998 045 013 1.000 .003
¢ Education 1.000 053 092 1.001 012
¢.. Marital Status 1.005 076 .021 1.001 004
Covariances of the
latent exogenous factors (¢s)
¢. Age, Gender -.120 034 033 -.124 033
¢, Age, ion -.468 038 034 -.465 - 032
#.. Gender, Marital Status -.546 045 036 -.546 033
¢, Education, Marital Status .368 046 .041 37 038
Factor loadings of the
latent endogenous factors (Ay's) )
A IADL 2.830 342 559 2.920 647
A, Compared health 481 .034 031 481 033
Effects associated with
endogenous factors {fs)
%, Chronic condition on:
7, Functional limit 117 .020 031 120 035
7, Self-evaluated health -455 032 033 -455 035
7, Functional limit on:
7, Self-evaluated health ~-478 084 106 -493 118
Effects associated with
exogenous factors (cs)
£, Age on:
7, Chronic condition -.032 041 042 ~-034 .040
7, Functional limit 136 022 035 140 038
7, Self-evaluated health -.001 033 035 001 037
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<Table 4> Unstandardized Free Parameter Estimates and Standard Errors from ML, Robust, and

Bootstrap Methods for the Full Sample (N=970)

(continued)

Original ML Robust’ Bootstrap®
Parameters Estimate SE? SE Avg. Est SE
&, Gender on:
7, Chronic condition -.053 054 054 -.053 058
7, Functional limit 048 021 024 .049 025
7, Self-evaluated health 102 040 041 097 039
&, Education on:
7, Chronic condition 045 045 .048 043 050
7. Functional limit -.050 018 .019 -.048 020
7, Self-evaluated health 171 033 032 167 034
€, Marital status on:
7, Chronic condition -155 064 064 - 157 070
7. Functional limit -.045 025 026 -.046 027
7, Self-evaluated health 009 048 049 002 051
Residual error variances
in equations ( &s)
¥, Chronic condition 984 054 032 977 015
¥., Functional limit 139 022 052 145 057
¥, Self-evaluated health 381 046 048 376 049
Measurement error variances
in indicators (f¢’s)
8., ADL 730 039 174 730 178
B¢, 1ADL 200 158 155 .202 .146
¢, Evaluated health .250 044 047 .244 048
e, Compared health 267 016 014 .268 014

I Robust standard errors are derived from the Maximum Likelihood fitting function.

2 The Bootstrap sample size (the number of replications) is 200.

3 Standard errors
4 Average estimate of 200 replications,

Note: In 31 replications, measurement error variance of IADL was constrained at lower bound.

empirical sampling distribution of the estimates
(Bollen and Stine, 1990). Hence, the bootstrap
is a proper method of evaluating the obtained
standard errors in the current analyses given
the nonnormal distribution of the wvariables in
the present data set.

A bootstrap sample is a random sample

drawn with replacement from the actual
sample. The number of resampling determines
the size of a bootstrap sample. In general, a
bootstrap sample size of 100 is recommended
for estimting standard errors, while an adequate
size ranges between 50 and 200 (Efron and
Tibshirani, 1986: Stine, 1989). Because of the
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large amount of work involved in pursuing the
bootstrap with the model examined, the
bootstrap approach was applied only for the
Full sample. In each sampling from the Full
sample with 970 cases, the same number (970)
was sampled 200 times to form a bootstrap
sample, The standard deviations of the
estimates from the bootstrap sample of size 200
become the criteria to compare the original ML
and the robust ML standard errors.

Table 4 presents the unstandardized
parameter estirnates and their standard errors
from three different methods. With regard to
the parameter estimates, the averages of the
bootstrap estimates approximate the original
ML estimates, suggesting that the ML
estimates are unbiased, The standard errors
were similar with some exceptions. These
exceptions involve those variables with ADL
which is highly kurtotic in the data set. When
there is a discrepancy, the robust standard
errors were much closer to the bootstrap
standard errors than were the original ML
standard errors. In particular, the bootstrap
standard errors of age, gender, and marital
status were srnaller than the robust standard
errors, eliminating the suspected identification
problem emanating from very small standard
errors in the robust statistics reported
previously. Hence, it is concluded that the
robust standard errors are very reasonable in
the present study, whereas some of the ML
standard errors are biased. A more important
issue is whether the statistical decisions derived
from the ML estimator could remain stable. As
presented before, stability is empirically
supported by almost identically made statistical
decisions at the .05 significance level between
the ML and the robust standard errors.

V. CONCLUSIONS

The proposed model was primarily estimated
with the ML method and replicated with the

AGLS method due to the violation of the data
set for multinormality assumption of the ML
method. However, the AGLS estimator was
influenced by extremely nonnormal distribution
of ADL, which is an indicator of the latent
factor, functional limit, and thus, it behaved
inadequately in the present modeling conditions,
This observation suggests that there may be a
threshold for the AGLS estimator in accepting
nonnormal distributions of indicators in order to
produce proper results given the present
conditions.

The ADF method is known to have the
merit of the asymptotically distribution free,
which is insensitivity to the distributions of
data. Despite having this merit, the method
lacks robustness against small and moderate
sample sizes because its asymptotic properties
are proven to be true only for large samples
(Anderson and Gerbing, 1988: Satorra, 1990).
For example, an empirical study (Hu, Bentler,
and Kano, 1992) required a sample size of 5000
to produce satisfactory »* statistics for a given
model. On the other hand, Boomsma (1987)
reported robustness of the ML estimator against
small samples if the size is greater than 200 for
the model tested. With different modeling
conditions, the sample sizes of the present data
set are well above 200, with which the ML
estimator worked well. However, it is hard to
determine the adequate sample size for the
AGLS estimator in the present model since
there are no guidelines for such sample sizes for
AGLS applications, Nevertheless, it is most
likely that the present sample sizes are far
below that needed to produce adequate AGLS
estimates in the present modeling conditions
such as the degree of nonnormal distributions of
observed variables and the degree of model
complexity.

The adequacy of the ML method for
evaluating the proposed model was demonstrated
through comparisons of the ML and the robust
statistics in light of the bootstrap findings. The
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ML estimates were unbiased. Although the
robust standard errors were better than the
original ML standard errors, statistical decisions
based upon the origianl ML standard errors
remained almost the same.

It is suggested that a reference indicator for
determining the metric of a latent variable
should not have high skewness and kurtosis, A
safe practice would be to choose a reference
indicator as the one with closest to normal
distribution. Since the nonnormal distributions of
variables produce biased standard errors and ¥’
ML method, it is
recommended to adopt the statistics corrected for

statistics from the

the nonnormality such as the robust standard
errors. In addition, the ADF estimators need to
be used with caution, since the estimators tend
to be unstable with high standard errors when
the data set does not satisfy its requirement of a
large sample size under the complexity of a
model to be estimated.
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