힐베르트의 세 번째 문제

  • 한인기 (한국교원대학교 수학교육연구소)
  • 발행 : 1999.12.01

초록

In Euclidean plane geometry, areas of polygons can be computed through a finite process of cutting and pasting. The Hilbert's third problem is that a theory of volume can not be based on the idea of cutting and pasting. This problem was solved by Dehn a few months after it was posed. The purpose of this article is not only to study Hilbert's third Problem and its proof but also to provide basis for the secondary school mathematics.

키워드

참고문헌

  1. Третъя протъя проблема Гиьберта(힐베르트의 세 번째 문제) БоЛтянский B.Г.(발뜨얀스키)
  2. История математики в школе: IX-X кл. Лособие для учителей(9-10학년에서의 수학사, 교사를 위한 참고서) Глейзер Г.И.;-M.(글레이제르)
  3. Classics of Mathematics Mathematical problems: Lecture Delivered Before the International Congress of Mathematicians at Paris in 1900. Hilbert D.;R. Calinger(Ed.)
  4. Mathematical morsels. MAA. (러시아어 번역판:МатематиЧеские изюмнки) Hosberger R.
  5. Геометия: 10-11кл.: учебник и задачник(기아 10-11학년) Киселев A.П.(끼실료프);Рыбкин Н.А.(리프낀)
  6. Математический Знциклопедический словаръ(수학 백과 사전) /Гл. ред. ю.В. Проxорв(프라호로프 책임 편집)
  7. Для Учащихся В мире многогранников Смиова И.М.