A note on M-groups

Abstract

Every finite solvable group is only a subgroup of an M-group and all M-groups are solvable. Supersolvable group is an M-group and also subgroups of solvable or supersolvable groups are solvable or supersolvable. But a subgroup of an M-group need not be an M-group. It has been studied that whether a normal subgroup or Hall subgroup of an M-group is an M-group or not. In this note, we investigate some historical research background on the M-groups and also we give some conditions that a normal subgroup of an M-group is an M-group and show that a solvable group is an M-group.

0. Introduction

An irreducible complex character χ of a finite group G is monomial if it is induced from a linear (i.e. degree 1) character of some subgroup of G. A finite group G is M-group if all its irreducible characters are monomial. Let $\text{Irr}(G)$ be the set of all irreducible complex character of a finite group G.

One of the remaining mysteries about M-group is whether of not normal subgroups of odd M-groups must, themselves, be M-groups. In [3], Dade constructed an example of an M-group of order $2^3 \cdot 7$ which has a non M-normal subgroup of index 2. A normal subgroup of an M-group must not be an M-group. I. Chubarov[1] proved that odd normal subgroups of M-groups are M-groups. Let G be an M-group and suppose $N \triangleleft G$. If N is an M-group then all of its primitive characters are linear. The converse of this statement is easily seen to be false.

* The author wishes to acknowledge the financial support of Hanyang University, Korea, made in the program year of 1999.
A note on M-groups

In [7], if G is an M-group and $N \lhd G$ with either $|N|$ or $|G:N|$ odd, then N is an M-group. In [6], Isaacs proved that if G is an M-group and suppose $S \lhd \lhd G$ is a subnormal subgroup of odd index then every primitive character of S is linear. Two are still the main problems on M-groups: are Hall subgroups of M-groups M-group? Under certain addness hypothesis are normal subgroups of M-groups M-group? In both cases there is evidence that this could be the case: the primitive characters of the subgroups in question are the linear characters.

Recently, some idea appears to take form. In [13], T. Okuyama proved that if G is an M-group and P is a Sylow p-subgroup of G, then $N_G(P)/P$ is an M-group. In [8], M. Isaacs showed that if H is a Hall subgroup of an M-group then $N_G(H)/H'$ is also an M-group. In [12], G. Navarro proved that if H is a Hall subgroup of an M-group G and $\varphi \in \text{Irr}(N_G(H))$ is primitive then φ is linear. In [10], M. Lewis proved that if H is a maximal subgroup of an M-group G such that $|G:H|$ is odd, and $\varphi \in \text{Irr}(H)$ is primitive then $\varphi(1)^2$ divides $|G:H|$. In [10], he proved that if S is a subgroup of an M-group of G that is reachable by primes, H is a Hall subgroup of S and $\varphi \in \text{Irr}(H)$ is primitive, then $\varphi(1)$ is a power of 2. Furthermore, if $|G:S|$ is odd, then $\varphi(1)=1$.

Recall that M-groups are necessarily solvable(Takeda, [16]).

A group G is said to be supersolvable if there is a normal subgroup series

$$G = G_1 \trianglerighteq G_2 \trianglerighteq \cdots \trianglerighteq G_n = 1$$

with cyclic factor of prime order where each $G_i \lhd G$.

Since supersolvable groups are M-group[3], we have

\{nilpotents\} \subset (supersolubles) \subset (M-groups) \subset (solvables).

The following remarks are clear([4], [14], [15]).

1. A subgroup of a supersolvable group is supersolvable.
2. Any factor group of a supersolvable group is also supersolvable.
3. A minimal normal subgroup of a supersolvable group is of prime order.
4. The index of maximal subgroup of a supersolvable group is a prime order.

Let $\text{Irr}(G/\theta)$ be the set of all irreducible constituents of θ^G where θ^G is the induced characters of G for a character θ of normal subgroup N, and let for a character χ of G, χ_N be the restriction of χ to a normal subgroup N.

In this note, we show that under certain hypothesis the normal subgroup of M-group and the solvable group are M-groups.
1. Normal subgroups

Proposition 1. Let $N \triangleleft G$ and assume that G/N is solvable. If for $\chi \in \text{Irr}(G)$, θ is an irreducible constituent of χ_N then $\chi(1)/\theta(1)$ divides $|G:N|$.

\textbf{proof.} We induct on $|G:N|$. If $|G:N|=1$ then $\chi = \theta$ and so $\chi(1)/\theta(1)=1$. Thus it is clear.

We assume that $N \triangleleft G$. Let M is an maximal normal subgroup of G containing N. Since G/N is solvable, $|G:M|=p$ is prime.

Let $\varphi \in \text{Irr}(M)$ be a constituent of χ_M such that θ is a constituent of φ_N.

By inductive hypothesis, $\varphi(1)/\theta(1)$ divides $|M:N|$.

Now we need $\chi(1)/\varphi(1)$ divides $|G:M|$. Hence since $|G:M|=p$. Thus we have either $\chi_M=\varphi$ is irreducible or $\chi_M=\sum_i \varphi_i[5]$.

If $\chi_M=\varphi$, then $\chi(1)=\varphi(1)$ and $\chi(1)/\varphi(1)=p$ divides $|G:M|$, otherwise $\chi(1)=p\varphi(1)$ and so $\chi(1)/\varphi(1)=p$ divides $|G:M|$. Hence the proof is complete.

Corollary 2. Let $N \triangleleft G$ and assume that G/N is solvable. Let $\chi \in \text{Irr}(G)$ if $(\chi(1), |G:M|)=1$ then χ_N is irreducible.

\textbf{proof.} Let θ be an irreducible constituent of χ_N. Then by Proposition 1, $\chi(1)/\varphi(1)$ divides $|G:M|$.

Thus we have $\chi(1)/\theta(1)=1$ since $(\chi(1), |G:M|)=1$. So $\chi(1)=\varphi(1)$.

Thus $\theta_N=\theta$ is irreducible.

Theorem 3. Let G be an M-Group and suppose that $N \triangleleft G$ with $(|N|, |G:M|)=1$. Then N is an M-Group.

\textbf{proof.} Let $\theta \in \text{Irr}(N)$ and let χ be an irreducible constituent of θ^G. Since G is an M-Group, χ is monomial. So $\chi = \lambda^G$ where $\lambda \in \text{Irr}(N)$ is linear for some $H \subseteq G$.

Let $\varphi = \lambda^{NH}$. Then we have $\varphi^G = (\lambda^{NH})^G = \lambda^G = \chi \in \text{Irr}(G)$.

Thus $\varphi \in \text{Irr}(NH)$. Hence we obtain $\varphi(1)=\lambda^{NH}(1)=|NH:H|\lambda(1)=|NH:H|=|N:N \cap H|$.

This divides $|N|$. Since $|N|$ is coprime to $|G:N|$, $(\varphi(1), |G:N|)=1$. But since $|NH:N|$ divides $|G:N|$, we have $(\varphi(1), |NH:N|)=1$. Note that M-Group is solvable(Takeda, [5]). Hence G is solvable. So NH/N is solvable. Thus by corollary 2, φ_N is irreducible.

But $\varphi_N=(\lambda^{NH})_N=(\lambda_{N\cap H})^N$. So φ_N is monomial. Since $\varphi^G = \chi$, by Frobenius
Reciprocity φ is a constituent of χ_{NH}. Thus φ_N is an irreducible constituent of $(\chi_{NH})_N = \chi_N$. Since φ is irreducible constituent of χ_N, by Clifford’s theorem $\theta = (\varphi_N)^k$ for some $g \in G$. Hence θ is a monomial. The proof is now complete.

2. Characters of solvables

Theorem 4. Let $N \triangleleft G$ and suppose that G/N is supersolvable. Let $\chi \in \text{Irr}(G)$. Then

1. If χ_N is reducible then there exists a subgroup H with $N \triangleleft H \triangleleft G$ such that $|G:H|$ is prime and χ is induced from irreducible character of H.
2. There exists a subgroup U with $N \triangleleft U \triangleleft G$ and a character $\varphi \in \text{Irr}(U)$ such that $\varphi^G = \chi$ and φ_N is irreducible.
3. If G is metabelian ($G'' = 1$) then G is an M-group.

Proof. (1) Let $L \triangleleft G$ be maximal with $N \triangleleft L \triangleleft G$ and χ_L is reducible. Then G/N is supersolvable. If we take $K \triangleleft G$ such that K/L is chief factor (K/L is minimal normal subgroup of G/L), then by the supersolvability of G/L, K/L is cyclic with order prime p and $\chi_K \in \text{Irr}(G)$.

Since $(\chi_K)_L = \chi_L$ is reducible, we have

$$\chi_L = \varphi_1 + \varphi_2 + \cdots + \varphi_p,$$

where $\varphi_i \in \text{Irr}(L)$ are distinct [5].

On the other hand, $\chi_L = e \sum_{i=1}^r \theta_i$ where $\{\theta_1, \ldots, \theta_r\}$ is the conjugacy classes of $\theta = \theta_1$ via the action of G on $\text{Irr}(G)$ and $t = |G : I_G(\theta)|$, where $I_G(\theta)$ is inertia group [5].

Hence we have $e = 1$ and $t = p$. If $H = I_G(\theta)$, then $N \triangleleft H \triangleleft G$ and $|G : H| = t = p$ prime. Since $|\chi_L, \theta| = 1 \neq 0$, $\chi \in \text{Irr}(G \mid \theta)$ and thus by Clifford’s correspondence, χ is induced from some irreducible character of H.

(2) Let $U \triangleleft G$ be minimal such that $N \triangleleft H \triangleleft G$ and χ is induced from some irreducible character of U. Let $\psi \in \text{Irr}(U)$ such that $\psi^G = \chi$. Assume that ψ_N is reducible. Then by (1), there is a subgroup $V \triangleleft U$ with $N \triangleleft V \triangleleft U$, $|U : V|$ is prime and $\psi = \theta^V$ for some $\theta \in \text{Irr}(V)$. Thus we have $V \triangleleft U$ and $\chi = \psi^G = (\theta^V)^G = \theta^G$ which contradicts to the minimality of U. Hence ψ_N is irreducible.

(3) Let $\chi \in \text{Irr}(G)$, we have $G' \triangleleft G$ and G/G' is abelian. Thus by (2), there exists $U \triangleleft G$ with $G' \triangleleft U \triangleleft G$ and $\varphi \in \text{Irr}(U)$ such that $\chi = \varphi^G$ and $\phi_{G'} \in \text{Irr}(G')$.

But by hypotheses $G'' = 1$, that is, G' is abelian.

Hence all irreducible characters are linear. In particular $\phi_{G'} = \lambda$ is linear. It follows
that \(\phi(1) = \phi \circ (1) = \lambda(1) = 1 \). Hence \(\phi \) itself was linear.

Note that \(G' \leq U \leq G \) implies \(U/G' \leq G/G' \) be abelian, so \(U/G' \triangleleft G/G' \) and so \(U \triangleleft G \) conclude that all \(\chi \in \text{Irr}(G) \) is induced from an irreducible character \(\phi \) of a normal subgroup \(U \triangleleft G \). Thus \(G \) is \(M \)-group.

Lemma 5. Let \(\chi \in \text{Irr}(G) \) be primitive and \(N \triangleleft G \). Then \(\chi_N \) is homogeneous.

proof. Let \(\theta \) be an irreducible constituent of \(\chi_N \) and \(T = I_G(\theta) \). Then there is \(\phi \in \text{Irr}(T | \theta) \) such that \(\phi^G = \chi \). Primitivity of \(\chi \) yields that \(T = G \). Hence \(\theta \) is invariant in \(G \), so \(\{ \theta \} \) is a \(G \)-orbit in \(\text{Irr}(N) \) and thus \(\theta \) is the only irreducible constituent of \(\chi_N \). Therefore \(\chi_N \) is homogeneous.

Corollary 6. Let \(\chi \in \text{Irr}(G) \) be primitive and \(A \triangleleft G \) be abelian. Then \(A \trianglelefteq Z(\chi) \).

proof. By Lemma 5, we have \(\chi_A = e \lambda \), where \(\lambda \in \text{Irr}(A) \) is linear. Thus we obtain \(e = \chi(1) \) and if \(a \in A \) then

\[
| \chi(a) | = | \chi(1) \lambda(a) | = \chi(1) | \lambda(a) | = \chi(1),
\]

hence \(A \trianglelefteq Z(\chi) \).

Corollary 7. Let \(\chi \in \text{Irr}(G) \) be primitive and \(N = \text{Ker} \chi \). Then every abelian normal subgroup of \(G/N \) is central and cyclic.

Proof. If \(N=1 \) (\(\Leftrightarrow \text{Ker} \chi = 1 \Leftrightarrow \chi \) is faithful), then by Corollary 6, \(A \trianglelefteq Z(\chi) = Z(G) \). But \(Z(\chi) \) is cyclic. Thus \(A \) is central and cyclic.

In general, let \(A/N \triangleleft G/N \) and let \(A/N \) be abelian, then \(A \triangleleft G \) and by Lemma 5, \(\chi_A = e \theta \) for \(\theta \in \text{Irr}(A) \). Hence we have \(\chi(1) = e \theta(1) \). If \(n \in N \), then we get \(\chi(1) = \chi(n) = e \theta(n) \) and thus we obtain \(\theta(n) = \theta(1) \). Hence \(N \trianglelefteq \text{Ker} \theta \). But \(\theta \) comes from some irreducible character of \(A/N \). Since \(A/N \) is abelian, \(\theta \) is linear. Thus we have \(\chi(a) = \chi(1) \) for \(a \in A \), so \(A \trianglelefteq Z(\chi) \). But \(Z(\chi)/N = Z(\chi)/\text{Ker} \chi \) is central and cyclic in \(G/N \) [5]. Hence \(A/N \) is central and cyclic in \(G/N \).

Theorem 8. Let \(G \) be a solvable. Suppose \(N \triangleleft G \) such that \(G/N \) is supersolvable and every Sylow subgroup of \(N \) for all prime is abelian. Then

1. There exists an abelian normal subgroup \(A \) of \(G \) such that \(A = C_G(A) \).
2. \(G \) is an \(M \)-group.

proof. (1) Let \(A \triangleleft G \) be abelian and maximal with the property. Write \(C = C_G(A) \). Then \(A \trianglelefteq C \). Assume that \(A \triangleleft C \). Then \(C/A \triangleleft G/A \). Let \(M/A \) be minimal normal in \(G/A \) with \(M/A \trianglelefteq C/A \). Then \(A \trianglelefteq M \trianglelefteq C \) and \(M/A \) is \(p \)-group, since \(G \) is solvable.
A note on M-groups

Case I. $M \subseteq NA$

$M=(M \cap N)A$, and also $M \cap N/A \cap N$ is p-group. Thus for some $S \in \text{Syl}_p(M \cap N)$, $M \cap N = S(A \cap N)$. Let $M = S(A \cap N)A = SA$. By hypothesis, S is abelian. Since $S \subseteq M \subseteq C = C_0(A)$ and A and S are abelian, $M = AS$ is abelian and also $M < G$, $M > A$. Hence it contradicts to the maximality of A.

Case II. $M \not\subseteq NA$

$NA \cap M < G$ and also $A \subseteq NA \cap M \subseteq M$. By minimality of M/A, we have $NA \cap M = A$ and $NA/M = NM$. Claim that NM/NA is minimal normal subgroup of G/NA. But G/NA is a homomorphic image of G/N. So it is supersolvable. It follows that $NM/NA \cong M/A$ has prime order and is hence cyclic. Thus $M = A(m)$ for $m \in M$. Note that $<m> \subseteq M \subseteq C_0(A)$ and $<m>$, A are abelian. Hence M is abelian which contradicts to the maximality of A. Therefore, $A = C = C_0(A)$ and the proof is complete.

(2) Let $\chi \in \text{Irr}(G)$ for a group G. Then there is $N \leq G$ such that for some $\psi \in \text{Irr}(N)$, $\psi^G = \chi$ and ψ is primitive. But N is a subgroup of G with the hypothesis. We put $K = \text{Ker}\psi$. Then N/K satisfies the hypothesis. Hence N/K has the property that all of its abelian normal subgroup are central and cyclic. By (1), N/K is abelian. Since $K = \text{Ker}\psi$, ψ comes from an irreducible character of the abelian group N/K and thus $\psi(1) = 1$.

References