이동통신 마이크로셀 기지국의 최적 위치선정을 위한 전파경로 해석

An Propagation Path Analysis for Optimal Position Selection of Microcell Base Station in the Mobile Communication System

노 순 국*, 박 창 균** (Sun Kuk Noh*, Chang Kyun Park**)

※ 이 논문은 1998년도 조선대학교 학술연구비의 지원을 받아 연구되었음

요 약

마이크로셀 이동통신에서 기지국으로부터 이동국까지의 전파환경을 보다 산속하고 정확히 해석하기 위해 전파의 반사 횟수와 전파경로를 연산처리 할 수 있는 삼각해석법 알고리즘을 제안한다.

그리고, 이동국이 가시거리 영역의 전파 음영지역 또는 가시거리 영역과 임의의 경사각으로 기울어져 있는 비가시거리 영역의 전파 음영지역에 위치한 경우를 각각 가정하고, 제안 알고리즘을 시뮬레이션하여, 그 결과를 분석함으로써 마이크 로셀 이동통신의 최적 기지국 위치 선정 조건을 제시한다.

ABSTRACT

In the microcell mobile communication, we propose algorithms processing operational disposition to exactly analysis propagation environments from the base station to mobile stations. Algorithms are developed by the triangle analysis method can operate variable propagation paths and reflect numbers.

For simulation, we suppose that mobile stations are located in the shadow region of the line of sight and the area of the non-line of sight sloping against the line of sight area at variable angles. By analyzing the results of simulation using proposed algorithms, we can be applied to the optimal position selection of the base station in the microcell mobile communication.

I. 서 론

차량이동통신, 개인휴대통신, 무선데이터통신 등, 이동 통신 응용 시스템의 최적 샐 설계를 위해서는 특정 생활 공간에서의 전파특성에 대한 연구가 우선되어야 한다.

특히, 서비스 반경이 1km이상인 매크로셀의 경우와는 달리, 1km이내인 마이크로셀 또는 피코셀 이동통신 방식 에서는 인접기지국간 신호의 상호간섭을 최소화해야 할 필요에따라 기지국의 출력을 가능한 한 최소로 하고, 송신 안테나 높이는 주변 건물보다 낮게 설치되어야 하기 때문에 샐내에 위치한 지형지물은 전파특성에 큰 영향을 미칠 뿐만 아니라 다양하여 실제 이동국의 70%이상이 전파 음영지역에 위치하게 된다[1-7]. 그러므로, 셀내 지형지물 의 형상에 따라 달라지는 전파환경과 경로를 해석하여 마이크로셀 이동통신 시스템 설계에 활용할 필요가 있다 [8-14].

그동안 이동통신의 보급이 급속도로 확산되면서 전파 경로 추적을 위한 연구활동이 활발히 진행되어 다중영상 경로추적법과 전과송출법 등이 제시되었다.[15-17] 그러나 이들 모델은 전파경로 해석에 사용된 예측 코드의 구현 이 매우 까다로워 계산소요시간이 많고 연산처리 또한 불가능하여, 실제 반사횟수가 많은 이동통신 전파환경에 서는 그 응용이 불가능하다는 단점을 갖고 있다.

따라서, 본 연구에서는 도심 생활공간 마이크로셀 또는 피코셀 이동통신 전파환경을 가시거리의 전파음영지역과 비가시거리의 전파음영지역으로 구분하고, 각각의 경우 전파경로를 보다 정확히 해석하기 위해 전파의 입사각과 반사각, 전파경로의 도로폭, 비가시거리 영역의 경사각을 파라미터로 하여 기지국으로부터 송신된 전파가 이동국

^{*} 조선대학교 대학원 전자공학파

^{**} 조선대학교 전자정보통신공학부

접수일자: 1999년 8월 5일

까지 도래하는 동안 전파경로, 반사횟수, 경사각과 입사 각을 동사 연산처리 할 수 있는 삼각해석법에 의한 알고 리즘을 제안한다.

그리고, 제안 알고리즘을 시뮬레이션하여 그 결과를 분석함으로써 마이크로셀 또는 피코셀 이동통신의 최적 기지국 위치 선정 조건을 제시하고, 이동통신 셀 설계에 활용할 수 있도록 한다.

II. 전파경로 해석을 위한 앏고리쥼

기지국으로부터 송신된 전파가 도로변 양측 건물벽면 에서의 반복된 반사에 의해 이동국에 도달하기까지 전파 경로, 반사횟수, 경사각과 입사각을 해석하기 위한 알고 리즘을 제안하기 앞서 다음을 가정한다.

秋째, 기지국 안테나의 높이는 주변 건물보다 낮은 것 으로 한다.

'둘째, 전파의 입사각과 반사각이 10° 미만인 특별한 경의를 제외하고, 한번의 입사와 반사에 의해 진행하는 전파의 직진경로는 짧기 때문에 그 구간의 도로폭은 일정한 것으로 한다.

·넷째, 기지국으로부터 이동국에 도래하는 유효전파는 가시거리 영역과 비가시거리 영역의 도로변율 따라 수직인 건물벽면에 의한 반사파만이므로 수평파이다.

그럼 1은 이동국이 가시거리 영역의 직진도로로부터 약간 벗어난 임의의 전파 음영지역에 위치한 경우와 직진도 로와 임의의 경사각 θ[°], 로 기울어져 있는 비가시거리 영역의 직진교차로 상 또는 그로부터 약간 벗어난 임의 의 점에 위치한 경우로 각각 구분하고, 기지국으로부터의 전파가 이동국에 도래 하는 동안 입사각, 반사각, 경로상 도로폭 그리고 직진 교차로의 경사각 변화에 따라 값을 달리하는 전파의 반사횟수, 전파경로, 경사각과 입사각을 해석하기 위한 삼각해석법 알고리춤을 제안하고 시뮬랙 이션 하기 위한 가상 모델이다.

2.1 가시거리 영역 전파경로 해석 알고리즘 그림 2는 전파의 두 번 반사시 직진경로와 전파경로를 삼각해석법으로 구하기 위한 가상 전파진행모델이다.

그림 2, 가상 전파진행모델 Fig, 2. Supposition wave progress model.

2.1.1 반사파의 직진경로

그림 2와 같이 도로폭 W_1 인 직진 도로변을 따라 수직인 건물벽면상 점 P_0 로부터의 반사파가 점 P_1 에 α_1 의 각 으로 입사, β_1 의 각으로 반사하여 점 P_2 에 도달할 때까 지의 직진경로 $l_1(\overline{P_0, P_2})$ 은 전파경로 $r_1(\overline{P_0, P_1, P_2})$ 에 대응한 도로와 평행한 직선거리로써 식 (1)파 같다.

$$l_{1} = l_{\alpha} + l_{\beta} = \frac{W_{1}}{\sin \alpha_{1}} \cos \alpha_{1} + \frac{W_{1}}{\sin \beta_{1}} \cos \beta_{1}$$
$$= W_{1} \left(\frac{\cos \alpha_{1}}{\sin \alpha_{1}} + \frac{\cos \beta_{1}}{\sin \beta_{1}} \right)$$
(1)

그림 1과 같이 기지국으로부터의 전파가 가시거리 영역 음영지역에 있는 이동국까지 도래하는 동안, 한쪽 건물벽면 가준 n,번의 입사와 반사를 하고, 그 때 마다 입사각이 $\alpha_{s,n}$, 반사각이 $\beta_{s,n}$ 그리고 도로폭이 $W_{s,n}$ 인 경우, 전파 가 진행한 직진경로 $l_{s,n}$ 는 식 (1)을 확대 해석하여 구할 수 있고, 그 결과는 식 (2) 와 같다.

$$l_{s n_{i}} = \sum_{n_{i}=1}^{m_{i}} W_{s n_{i}} \left(-\frac{\cos \alpha_{s n_{i}}}{\sin \alpha_{s n_{i}}} + -\frac{\cos \beta_{s n_{i}}}{\sin \beta_{s n_{i}}} \right)$$
(2)

2.1.2 반사파의 전파경로

그림 2와 같이 도로폭 W_1 인 직진 도로변을 따라 수직인 건물벽면상 점 P_0 로부터의 반사파가 점 P_1 에 α_1 의 각으로 입사, β_1 의 각으로 반사하여 점 P_2 에 도달할 때까지의 전 파경로 r_1 ($\overline{P_0, P_1, P_2}$)은 전파의 직진경로 l_1 ($\overline{P_0, P_2}$) 에 대응한 전파의 실제 이동거리로써 식 (3)과 같다.

$$r_{1} = r_{\alpha} + r_{\beta} = \frac{W_{1}}{\sin \alpha_{1}} + \frac{W_{1}}{\sin \beta_{1}}$$
(3)

그림 2와 같아 기지국으로부터의 전파가 가시거리 영역 음영지역에 있는 이동국까지 도래하는 동안, 한쪽 건물벽 면 기준 n, 번의 입사와 반사를 하고, 그 때 마다 입사각 이 α_{s n}, 반사각이 β_{s n} 그리고 도로폭이 W_{s n}인 경우, 전파의 실제 이동거리인 전파경로 r_{s n} 는 식 (3)을 확대 해석하여 구할 수 있고, 그 결과는 식 (4)와 같다.

$$r_{s n_{t}} = \sum_{n_{t}=1}^{m_{t}} W_{s n_{t}} \left(\frac{\sin \alpha_{s n_{t}} + \sin \beta_{s n_{t}}}{\sin \alpha_{s n_{t}} \sin \beta_{s n_{t}}} \right)$$
(4)

2.2 비가시거리 영역 전파경로 해석 알고리쥼 2.2.1 비가시거리 영역의 전파 입사각

그림 1과 같이 기지국으로부터 송신된 전파는 반복된 반사에 의해 가시거리 영역과 임의의 경사각을 갖는 비 가시거리 영역에 진입하고, 진입한 전파의 입사각과 유효 전파의 분포는 가시거리 영역 전파의 최종반사각에 따라 각각 다르다.

반사각 β_{s n}인 가시거리 영역 최종 반사파가 θ_o 의 임의의 경사각을 이룬 비가시거리 영역 건물벽면에 도래 할 때, 전파의 최초 입사각 α_{cl}은 식 (5)와 같다.

$$\alpha_{\rm cl} = 180 - \left[\beta_{s \, n_{\rm c}} + \theta_{v}\right] \left[^{\circ}\right] \tag{5}$$

여기서, θ_n^{*} 는 6시 방향을 "0"으로 기준하여 반시 제 방향으로 회전할 때 "+"로 한다.

2.2.2 반사파의 직진경로

그림 1과 같이 가시거리 영역으로부터의 반사파가 도로 폭 W_{cn_s} 인 비가시거리 영역에 진입하여, 다시 임의의 입사 각 α_{cn_s} 와 반사각 β_{cn_s} 으로 n_c 번 반사하여 이동국까지 도 래하는 동안 반사파의 총 직진경로 l_n 을 가시거리 영역 에서와 동일한 방법으로 해석하여 구할 수 있고, 그 결과 는 식 (6)과 같다.

$$l_{n} = l_{sn_{t}} + l_{cn_{c}}$$

$$= \sum_{n_{t}=1}^{m_{t}} W_{sn_{t}} \left(\frac{\cos \alpha_{sn_{t}}}{\sin \alpha_{sn_{t}}} + \frac{\cos \beta_{sn_{t}}}{\sin \beta_{sn_{t}}} \right)$$

$$+ \sum_{n_{c}=1}^{m_{t}} W_{cn_{c}} \left(\frac{\cos \alpha_{cn_{c}}}{\sin \alpha_{cn_{c}}} + \frac{\cos \beta_{cn_{c}}}{\sin \beta_{cn_{c}}} \right)$$
(6)

2.3.3 반사파의 전파경로

반사파의 직진경로 해석에서와 같이 동일한 조건에서 가시거리 영역으로부터의 반사파가 비가시거리 영역의 이동국까지 도래하는 동안 반사파의 총 전파경로 r_n을 가시거리영역에서와 동일한 방법으로 해석하여 구할 수 있고, 그 결과는 식 (7)과 같다.

$$r_{n} = r_{sn_{*}} + r_{cn_{*}}$$

$$= \sum_{n_{*}=1}^{m_{*}} W_{sn_{*}} \left(\frac{\sin a_{sn_{*}} + \sin \beta_{sn_{*}}}{\sin a_{sn_{*}} \sin \beta_{sn_{*}}} \right)$$

$$+ \sum_{n_c=1}^{m_c} W_{c n_c} \left(\frac{\sin \alpha_{c n_c} + \sin \beta_{c n_c}}{\sin \alpha_{c n_c} \sin \beta_{c n_c}} \right)$$
(7)

III. 시뮬레이션 및 결과

재안 알고리즘을 시뮬레이션하기 위한 사양은 표 1과 같다. 단, 해석의 편의상 가시거리 영역과 비가시거리 영 역을 진행하는 전파의 반사는 모두 정반사이고, 두 영역 의 도로폭은 동시에 동일폭으로 변하는 것으로 가정한다.

표 1. 시뮬레이션 사양 Table 1. Simulation specification

가상 전파경로	그림 1
전파환경	도심 마이크로셀 PCS 이동통신
서비스 가능거리	가시거리 1,000m, 비가시거리 1000m
도로폭	10m, 20m, 30, 40m
입사각과 반사각	5°~85°
교차로 경사각	5°~170°

3.1 가시거리 영역 전파경로

3.1.1 반사파의 직진경로

전파의 입사각과 반사각 범위를 5°~ 85°로, 도로폭 범위를 10m~40m로 할 때, 두번 반사에 대응한 직진경 로와 전파가 이동국까지 도래하는 동안 가시거리 1km 구 간에서 발생하는 반사횟수는 식 (2)에 의해 구할 수 있고, 그 결과는 표 2, 그림 3과 같다.

그림 3. 입사각과 반사각, 도로폭에 따른 반사횟수

Fig. 3. Reflection numbers by incidence angles, reflection angles and road widths.

표 2의 결과를 구체적으로 비교할 수 있도록 두번 반 사시 직진경로, 전파가 이동국까지 도래하는 동안 반사횟 수의 최대·최소값, 그리고 평균값을 정리한 결과는 표 3 과 같다.

	입사간과	2번			입사각과	2번	
S.로件 Iml	반사과	반사시 지지경로	[만사] 회수	노토폭 [m]	반사각	반사시 지지경 =	반사 회수
1.013	ניז ו	[m]	20		្រោ	적선정도 [111]	XT
	5	228.6	8		5	685.9	2
	10	113,4	17		10	340.3	5
	15	74.6	26		15	223.9	8
	20	54.9	36		20	164.8	12
	25	42.9	46		25	128.7	15
	30	34.6	57		30	103.9	19
	35	28.6	70		35	85.7	23
	40	23.8	83	Ì	40	71.5	27
10	45	20.0	99	30	45	60.0	33
	50	16.8	119		50	50.3	39
	55	14.0	142		55	42.0	47
[60	11.5	173	ļ	60	34.6	57
	65	9.3	214	ł	65	28.0	71
	70	7.3	274		70	21.8	91
	75	5.4	373		75	16.1	124
	80	3.5	567		80	10.6	189
	85	1.7	1143		85	5.2	381
	5	457.2	4	ļ	5	914.4	2
	10	226.9	8		10	453.7	4
	15	149.3	13	{	15	298.6	6
	20	109.9	18	1	20	219.8	9
	25	85.8	23	ļ	25	171.6	11
	30	69.3	28		30	138.6	14
	35	57.1	35		35	114.3	17
	40	47.7	41)	40	95.3	20
20	45	40.0	49	40	45	80.0	24
	50	33.6	59		50	67.1	29
	55	28.0	71		55	56.0	35
	60	23.1	86	Į	60	46.2	43
	65	18.7	107		65	37.3	53
	70	14.6	137]	70	29.1	68
	75	10.7	186	ļ	75	21.4	93
	80	7.1	283		80	14.1	141
	85	35	571		85	7.0	285

표 2. 입사각과 반사각, 도로폭에 따른 직진 경로와 반사횟수 Table 2. Direct paths and reflection numbers by incidence angles, reflection angles and road widths.

H 3. 입사각과 반사각 5°~ 85°에서 도로폭에 따른 직진경 로와 반사횟수

Table 3. Comparison of direct paths and reflection numbers by incidence angles, reflection angles and road widths.

	2번 반	사 직	진경로 [m]	 반사횟수		
.도로폭 [m]	최대	최소	평균 직진경로	최대	최소	평균 반사횟수
10	228.6	1.7	40.6	1143	8	202.8
20	457.2	3.5	81.3	571	4	101.4
30	685.9	5.2	122.0	381	2	67.2
40	914.4	7.0	162.6	285	2	50.2

시뮬레이션 결과의 특징은 다음과 같다.

◈ 전 입사각과 반사각에서 두 번 반사시 직진경로의 최대·최소차는 도로폭에 반비례하여 도로폭이 넓을 수록 커진다.

◈ 전 입사각과 반사각에 대한 평균 직진경로는 도로. 폭에 비례하여 도로폭이 넓을 수록 길어진다.

◈ 전 입사각과 반사각에서 반사횟수는 도로폭에 반비 례하여 도로폭이 넓을수록 적어지고, 평균 반사횟수 또한 도로폭에 반비례하여 도로폭이 넓을 수록 적어진다.

결국, 동일한 입사각과 반사각에서 전파의 반사횟수는 주변 도로상황과 밀접한 관계가 있고, 도로폭이 넓을수록 반사횟수가 적어지므로 전파 경로손실 또한 적어진다.

표 4. 입사각, 반사각, 도로폭에 따른 전파경로

 Table 4. Propagation paths by incidence angles, reflection angles and road widths.

	입사각	전파	* = ¥	입사각	전파
도로폭 [m]	반사각	경로	도도국 (m]	반사각	경로
	[°]	[m]	finit	[°]	[m]
	5	1003.8		5	1003.8
	10	1015.4		10	1015.4
	15	1035.3	l i	15	1035.3
	20	1064.2		20	1064.2
	25	1103.4		25	1103.4
	30	1154.7		30	1154.7
	35	1220.8		35	1220.8
	40	1305.4		40	1305.4
10	45	1414.2	30	45	1414.2
	50	1555.7		50	1555.7
	55	1743.4		55	1743.4
	60	2000.0	,	60	2000.0
	65	2366.2		65	2366.2
	70	2923.8		70	2923.8
	75	3863.7		75	3863.7
	80	5758.8		80	5758.8
		11473.7	L	85	11473.7
	5	1003.8		5	1003.8
	10	1015.4		10	1015.4
	15	1035.3		15	1035.3
	20	1064.2		20	1064.2
	25	1103.4	1	25	1103.4
	30	1154,7		30	1154.7
	35	1220.8		35	1220.8
	40	1305.4		40	1305.4
20	45	1414.2	40	45	1414.2
	50	1555.7		50	1555.7
	55	1743.4	1	55	1743.4
	60	2000.0		60	2000.0
	65	2366.2		65	2366.2
	70	2923.8	1	70	2923.8
	75	3863.7		75	3863.7
	80	5758.8		80	5758.8
	85	11473.7			11473.7

3.1.2 반사파의 전파경로

입사각과 반사각 범위를 5°~ 85°로, 도로폭 범위를 10m ~ 40m로 할 때, 전파가 이동국까지 도래하는 동안 가사거리 1km 구간에서의 전파경로는 식 (4)에 의해 구할 수 있고, 그 결과는 표 4, 그림 4와 같다.

그림 4. 입사각, 반사각, 도로폭에 따른 전파경로

Fig. 4. Propagation paths by incidence angles, reflection angles and road widths.

표 4의 결과를 구체적으로 비교할 수 있도록 도로폭에 따른 전파경로의 최대·최소값과 평균값을 구한 결과는 표 5와 같다.

표 5. 도로폭에 따른 전파경로의 비교

Table 5. Comparison of propagation paths by road widths.

L a H	전파경로 [m]			C 2 X	전파경로 [m]			
포도국 [m]	최대	최소	평균전파 경 로	<u>포도국</u> [m]	최대	최소	평균전파 경 로	
10	11474	1004	2470	30	11474	1004	2470	
20	11474	1004	2470	40	11474	1004	2470	

시뮬레이션 결과의 특징은 다음과 같다.

 전파경로는 입사각과 반사각에 비례하여 각이 적을 수록 짧아진다.

◈ 전 입사각과 반사각에서 전파경로의 최대·최소차 는 도로폭에 관계없이 일정하다

◈ 전 입시각과 반사각에서의 평균 전파경로는 도로폭 에 관계없이 일정하다.

결국, 동일한 입사각과 반사각에서 전파경로는 주변 도로 폭과 관계없이 일정하고, 다만 도로폭은 반사횟수만에 영 향을 미칠뿐이다.

이상의 반사파 직진경로와 전파경로의 시뮬레이션 결과, 가시거리 영역에서 인접 기지국간 신호간섭을 최소화하 고 서비스 능률을 보다 향상시키기 위한 이동통신 마이 크로셀 기지국의 최적 위치는 샐내의 도로폭에 따라 각 각 달라지므로 표 2, 표 4로써 엄격히 규제되어야 한다

3.2. 비가시거리 영역 전파경로

3.2.1 전파의 입사각과 유·무효전파비

가시거리 영역 도로변 양측 건물벽면율 따라 진행한 전파가 최종 반사각 β_{sts}로 경사각 θ_s 의 비가시거리

표 6. 반사각과 경사각에 따른 입사각

Table 6. Incidence angles by reflection angles and sloping angles.

5 170 5 165 5 160 10 165 100 155 155 155 20 155 20 150 20 145 30 145 30 140 30 135 35 140 35 135 35 135 40 133 40 130 40 120 55 125 50 125 15 45 120 55 120 55 115 55 110 60 105 60 110 65 100 75 95 75 90 80 95 80 90 80 85 80 80 15 155 5 150 5 145 151 16 155 5 150 5 115 135 20 140 20 135 20 135 135	θ_v^*	β_{sn_i}	α_{cl}	θ_v	β _{sn,} *	a_{cl}	θ_v	β_{sn_s}	α_{cl}
10 165 10 160 150 100 155 15 150 150 150 150 140 30 145 30 140 30 135 40 133 40 130 40 125 50 125 50 125 155 35 130 50 125 50 120 50 115 660 110 60 115 60 100 75 90 85 80 75 100 75 90 85 80 85 80 80 95 80 90 85 80 85 80 85 90 85 85 80 85 80 10 150 10 145 10 140 15 130 20 140 120 33 125 30 120 130 130 130		5	170	[5	165		5	160
15 160 15 150 20 150 20 145 20 135 140 30 145 30 140 30 135 30 145 30 140 130 40 135 135 130 10 5 45 130 10 45 125 15 45 120 50 125 50 120 50 115 55 110 65 110 665 105 65 100 70 95 75 90 90 80 80 85 80 75 100 75 95 10 15 145 135 10 140 15 143 15 145 15 140 15 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 13		10	165	Ì	10	160		10	155
20 155 20 150 20 145 35 140 35 140 35 135 35 130 35 140 35 135 135 135 130 10 145 125 15 45 130 10 45 125 15 45 100 125 55 115 55 110 60 115 55 110 60 105 65 100 105 60 105 65 100 105 10 160 105 65 100 151 155 10 15 145 10 151 155 10 15 155 10 16 151 135 10 151 135 10 16 10 140 151 135 120 135 120 135 120 135 110 120 10 140 120 135 135 110 120 10		15	160		15	155		15	150
25 140 30 1445 30 140 30 135 30 143 30 140 30 135 130 130 40 133 40 130 140 130 40 125 55 120 55 115 55 110 60 110 60 115 60 110 60 105 55 110 60 115 60 110 60 105 65 100 65 100 75 95 75 90 85 85 85 90 95 80 90 85 85 85 145 10 150 10 144 10 140 130 120 130 25 135 25 130 25 135 120 130 25 135 125 35 120 35 155 15		20	155		20	150		20	145
30 145 30 140 30 135 35 140 35 135 35 130 5 45 130 10 45 125 15 45 120 50 120 55 115 55 100 105 60 115 60 110 65 100 70 95 75 100 75 95 75 90 90 80 85 85 80 75 100 75 95 75 90 90 80 85 80 75 100 155 5 150 5 140 15 140 15 145 15 140 15 130 20 130 20 130 30 125 30 120 35 115 20 45 115 25 45 110 30 125 30		25	150		25	145		25	140
35 140 35 135 40 130 40 125 5 45 130 10 45 125 15 45 120 55 120 55 115 55 110 60 105 60 115 60 100 60 665 100 70 105 70 100 70 95 75 90 80 95 80 80 90 80 85 80 5 155 5 150 5 145 10 145 10 145 115 140 15 145 15 145 20 140 20 135 20 130 20 130 35 125 35 100 155 100 55 100 20 45 115 25 100 35 115 20 100 <td< td=""><td></td><td>30</td><td>145</td><td></td><td>30</td><td>140</td><td></td><td>30</td><td>135</td></td<>		30	145		30	140		30	135
40 135 40 130 40 125 5 45 130 10 45 125 15 40 125 55 120 55 115 55 100 100 50 115 60 115 60 110 60 105 65 100 70 100 75 95 75 90 80 80 90 80 85 75 100 75 95 75 80 90 80 85 80 90 80 85 80 100 130 120 120 130 120 120 130 120 120 100 1		35	140		35	135		35	130
3 43 130 10 43 125 13 445 120 50 125 50 120 55 115 50 111 55 120 55 115 55 115 55 110 60 115 60 110 60 105 55 100 70 105 70 100 70 95 90 80 85 85 80 80 80 80 81 85 80 80 80 80 80 81 85 80 100 100 100 100 100 100 100 100		40	135		40	130		40	125
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	`	43	130	10	45	125	15	45	120
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		50	125		50	120		50	115
	1	33	120	ļ	35			35	110
0.03 110 0.03 100 70 100 70 95 70 70 100 75 95 75 90 80 95 90 80 85 85 85 80 80 95 85 85 85 85 80 80 80 80 81 10 150 10 145 10 140 15 135 10 150 10 145 10 140 15 135 20 140 20 135 20 130 25 125 30 130 30 125 30 120 30 120 35 125 35 100 55 105 55 100 55 95 60 100 60 95 60 90 65 85 95 61 100 30 10 120 10 1		60			00	110		00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		70	105		100	100		20	05
1.5 1.5 5.5 1.5 5.5 1.5 5.5 85 90 85 85 85 80 80 5 155 5 150 5 143 100 145 100 143 10 145 115 140 115 133 20 130 20 140 20 135 20 130 30 125 30 120 30 125 30 125 30 120 35 115 40 120 400 115 40 100 55 100 55 50 110 50 105 50 100 55 100 55 5 135 5 125 5 115 10 80 70 55 135 5 125 105 110		75	105		74	04		70	- 35 - 60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		80	05		5	- 35 00		80	30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		85	90		85	85		85	80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Š	155		5	150		5	145
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	10	150		10	145		10	140
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	15	145		15	140		15	135
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	25	135		25	130		25	125
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		30	130		30	125		30	120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		35	125		35	120		35	115
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	40	120	34	40	115	20	40	110
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 20	50	110	25	45 50	105	- 20	45 50	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	55	105		55	100		55	95
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		60	100		60	95		60	90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		65	95		65	90		65	85
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		70	90		70	85		70	80
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		80	80		80	75		80	70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L	85	75		85	70		85	65
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i	5	135		10	125		5	115
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	15	125		15	115		15	105
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	20	120		20	110		20	100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	25	115		25	105		25	95
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		30	105		30	95		30	90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		40	100		40	ŝõ		40	80
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	45	95	50	45	85	60	45	75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		50	90		50	80		50	70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ſ	55	85		55	73	Í	55	63
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		65	75		65	65		65	55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	70	70		70	60		70	50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	75	65		75	55		75	45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	80	60		80 **	50		80	40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	105		5	95		5	85
15 95 15 85 15 75 20 90 20 80 20 70 25 85 25 75 25 65 30 80 30 70 30 60 35 75 35 65 35 55 40 70 40 60 40 50 70 45 65 80 45 55 90 45 45 50 60 50 50 40 60 30 60 55 55 55 45 55 35 35 65 25 60 50 60 40 60 30 65 25 60 50 65 35 65 25 70 40 70 20 75 35 75 23 75 15 80 30 80 20 80	1	10	100		10	90		10	80
20 90 20 80 20 70 25 85 25 75 25 65 30 80 30 70 30 60 35 75 35 65 35 55 40 70 40 60 40 50 70 45 65 80 45 55 90 45 45 50 60 50 50 40 60 30 60 30 60 50 60 40 60 30 65 35 55 35 65 35 55 35 66 30 60 30 60 30 65 25 70 40 70 30 70 20 75 35 75 15 80 30 80 20 80 10 10 10 10 10 10 10 10 10 10	1	15	95		15	85		15	75
25 85 25 75 25 65 30 80 30 70 30 60 35 75 35 65 35 55 40 70 40 60 40 50 70 45 65 80 45 55 90 45 45 50 60 50 50 50 40 60 30 55 55 55 45 55 35 65 25 60 50 60 40 60 30 65 25 60 50 60 40 60 30 65 25 60 50 65 35 65 25 70 40 70 30 70 20 75 35 75 23 75 15 80 10 10 80 30 80 20 80	1	20	90	i	20	80		20	70
30 80 30 70 30 60 35 75 35 65 35 55 40 70 40 60 40 50 70 45 65 80 45 55 90 45 45 50 60 50 50 50 40 50 40 55 55 55 45 55 35 35 60 30 60 30 60 30 60 30 60 40 50 40 55 35 35 65 35 35 60 30 60 30 60 30 60 30 60 30 65 25 35 65 25 70 40 70 30 70 20 75 35 75 15 80 30 80 20 80 10 85 15 5 5 5 5	1	25	85		25	75		25	65
35 75 35 65 35 55 40 70 40 60 40 50 70 45 65 80 45 55 90 45 45 50 60 50 50 50 40 60 30 55 55 55 45 55 35 35 60 30 60 50 60 40 60 30 60 30 30 30 35 55 35 60 50 60 40 60 30 30 30 70 20 75 35 75 25 75 15 15 80 30 80 20 80 10	1	30	80		30	70		30	60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	35	75		35	65		35	55
10 45 65 80 45 55 90 45 45 50 60 50 50 50 40 50 50 40 55 55 55 45 55 35 35 60 50 60 40 60 30 63 45 65 35 65 25 70 40 70 30 70 20 75 35 75 25 75 15 80 30 80 20 80 10		40	70		40	60		40	50
50 60 50 50 40 55 55 55 45 55 35 60 50 60 40 60 30 63 45 65 35 65 25 70 40 70 30 70 20 75 35 75 25 75 15 80 30 80 20 80 10	70	45	65	80	45	55	90	45	45
33 55 55 45 55 35 60 50 60 40 60 30 65 45 65 35 65 25 70 40 70 30 70 20 75 35 75 25 75 15 80 30 80 20 80 10	1	50	60		50	50		50	40
00 50 60 40 60 30 65 45 65 35 65 25 70 40 70 30 70 20 75 35 75 25 75 15 80 30 80 20 80 10	1	55	55		55	45		55	35
0.3 4.3 0.3 5.3 0.3 2.3 70 40 70 30 70 20 75 35 75 25 75 15 80 30 80 20 80 10 85 75 85 15 5 5	1	00 6*	00	1	60	i 40 3≢		60	30 24
70 40 70 20 70 20 75 35 75 25 75 15 80 30 80 20 80 10 85 75 85 15 95 5	1	70	40	1	70	20		70	40 20
80 30 80 20 80 10 825 25 85 15 85 5	1	74	40		74	20		75	20
1 85 25 85 16 85 16 86 C	1	80	30		,, 80	20		80	10
וכונסו זיגונסן ועבועסו ס	Ł	85	25		85	15		85	5

이동통신 마이크로셀 기지국의 최적 위치선정을 위한 전파경로 해석

θ_{τ}^{*}	β_{sn}	$\alpha_{\rm d}$	θ_{v}	β_{sn}	ad	θ,°	β_{sn_i}	α_{c1}
	5	75		5	65		5	55
	10	70	ĺ	10	60		10	50
	15	65		15	55		15	45
	20	60		20	50		20	40
	24		ļ .	14	44		200	25
	20	35		20	10		20 20	35
	30	50			40		.30	30
	35	45		35	35		35	25
[]	40	40	l	40	[30		40	20
100	45	35	j 110 -	45	25	120	45	15
4	50	30		50	20	1	50	10
	55	25	1	55	15		55	5
	60	20		60	10		60	0
	65	15		65	5		65	-5
	70	10		70	0	l.	70	-10
	75	3		75	l .s		75	-15
	1 🦗	ň		80	10		80	.20
	00 00			80	10]	80	-20
	5	45	<u> </u> -	3	35	<u> </u>	5	25
	10	40		10	30		10	20
	15	35		15	25		15	15
	20	30		20	20		20	10
	25	25		25	15		25	5
	30	20		30	10	ŀ	30	0
	35	15		35	5	ł	35	-5
	40	10		40	0	İ.	40	-10
:30	45	5	140	45	-5	150	45	-15
	50	U V	1	50	-10	[50	-20
	33	-3		33	-15		33	-23
	60	-10		45	-20		60	- 30
	70	-15	}	20	-25		70	-40
	75	.25		75	.35		75	45
	80	-30	1	80	-40		80	-50
L	85	-35		85	-45		85	-55
	5	15		5	5			
J	10	10	J	10	9		1	J
1	15	5	ļ	15	-5			
1	20		ł	20	-10			
1	20	-3		20	-15			1
	35	-15		35	.25		Į	
1	<u>6</u>	-20		40	-30		1	
60	45	-25	170	45	-35			
1 ~	50	-30	1	50	-40	ļ		
i –	55	-35		55	-45			
1	60	-40		60	-50]		
1	65	-45		65	-60	l.		
1	70	-50		70	-55	1		
1	75	-55		75	-65			
	80	-60		80	-70			
1	1 85	1.65	1	1 85	1.71	1	1	1

영역에 진입할 때, 최종 반사각 범위 5°~ 85°와 경사각 범위 5°~ 170°에 따라 그 값을 달리하는 비가시거리 영 역 전파의 최초 입사각 α_{d} 과 입사한 전파의 유효전파와 무효전파의 분포는 식 (5)에 의해 구할 수 있고, 그 결과 는 표 6, 그림 5와 같다.

(a) 경사각 90°미만

(b) 경사각 90°이상

Fig. 5. Incidence angles by sloping angles and reflection angles.

표 6에서, 바가시거리 영역에 진입한 전파의 최초 입 사각이 |90°|보다 클 때는 진입한 전파 전부가 역반사 하여 이동국에 도래하지 않기 때문에 무효전파가 되는 경우이 고, "0"값은 가시거리 영역 최종 반사파가 비가시거리 영 역에 진입하여 무반사로 진행할 때이며, "-"값은 "+"값과 비교해 반대쪽 건물 벽면에 전파가 입사하는 경우이다.

그림 5(a)는 경사각 90° 미만에서 비가시거리 영역에 진입한 전파의 입사각으로써 이동국에 도래하는 유효파 수가 100% 미만인 경우이고, 그림 5(b)는 경사각 90° 이 상에서 비가시거리 영역에 진입한 전파의 입사각으로써 이동국에 도래하는 유효과수가 100%인 경우이다.

표 6의 결과를 구체적으로 비교할수 있도록 비가시거리 영역에 진입한 반사파의 유·무효전파 수의 비와 유효전 파 수의 백분율 즉, 가입자 서비스 가능 백분율을 정리한 결과는 표 7과 같다.

표 7. 경사각에 따른 파수비와 서비스율

Table 7. Wave number ratios and service rates by sloping angles.

경사각 [유·무효 과 수 비	서비 스울 [%]	경사각 [°]	유·무효 파수비	서비 스울 [%]	경사각 [゜]	유·무효 과수비	서비 스율 [%]
5	0:17	0	65	12:5	70.6	125	17:0	100
10	1:16	6.3	70	13:4	76.5	130	17:0	100
15	2:15	11.8	75	14:3	82.4	135	17:0	100
20	3:14	17.6	80	15:2	88.2	140	17:0	100
25	4:13	23.5	85	16:1	94.1	145	17:0	100
30	5:12	<u>29.</u> 4	90	17:0	100	150	17:0	100
35	6:11	35.3	95	17:0	100	155	17:0	100
40	7:10	4 <u>1.</u> 2	100	17:0	100	160	17:0	100
45	8:9	47.1	105	17:0	100	165	17:0	100
50	9:8	52.9	110	17:0	100	170	17:0	100
55	10:7	58.8	115	17:0	100	175	17:0	100
60	11:6	64.7	120	17:0	100	180	17:0	100

시뮬레이션의 결과, 도로폭에 무관하고 가시거리 영역의 최종 반사각에 따라 그 값을 달리하는 비가시거리 영역 최초 입사각의 특징을 정리하면 다음과 같다. ◈ 유효전파의 수는 경사각에 비례하여 클수록 증가 한다.

◈ 경사각 90°이상에서. 비가시거리 영역에 진입한 전 파의 100%가 유효전파이다.

◈ 경사각 90°이하에서 유효전파 수는 100%미만이고, 50°에서는 약 50%, 10°이하에서는 0%에 근접한다.

결국, 가입자 서비스를 충족시키기 위한 유효전파 비를 100%로 기준할 때, 경사각은 최소 90°이상이고, 유효전파 비를 70%로 할 때 경사각은 65°이상이어야 한다.

3.2.2 반사파의 직진경로

가시거리 영역과 비가시거리 영역의 직진경로를 각각 1km로 할 때, 입사각과 반사각 그리고 도로폭과 경사각에 따라 값을 달리하는 각 영역에서의 반사휫수와 총 반사 횟수는식 (6)에 의해 구할 수 있고, 그 결과는 표 8, 그림 6과 같다.

표 8. 경사각, 도로폭, 반사각, 입사각에 따른 충 반사횟수 Table 8. Total reflection numbers by sloping angles, road widths, reflection angles and incidence angles.

		도로	폭 10	[m]		도	로폭 3	0 (m	1	
경 사	최적 학	총	반사횟	<u>ት</u>	日子	최적 반·	**	반사흥	! 수	평규
각 [°]	년 입사 각 [°]	최 소	져 갑	차	방신 반사 횟수	- 입사 각 [°]	최 소	최 대	차	반사 횟수
90	45	198	1151	953	405.5	45	66	383	317	134.5
100	40	166	1151	985	305.4	40	54	383	329	101.1
110	35	140	1169	1029	253.4	35	46	389	343	89.2
120	30	114	1189	1075	259.4	30	38	396	358	83.2
130		92	1214	1122	244 1	29	30	404	374	180.6
140	200	72	1242	1170	2441	26	23		30)	80.6
						ir lient a		105 2.66		0.000
150	15	52	1285	1233	251.9	15	10	428	412	83.2
100	10	34	1357	1323	269.9	10	10	452	442	89.2
170	Ş	10	1510	1,500	305.4	3		303	501	101.1
		도	본폭 2() (m)			도로	.폭 40	[m]	
경 사	최적 반·	토토 총	보폭 2(반사횟) (m) ት	평균	최적 반·	도로	.폭 40 반사횟	[m] (수	평군
경 사 각 [゜]	최적 반· 입사 각	도로 종 최 소	본폭 20 반사흿 라 대)[m] 수 차	평균 반사 횟수	최적 반· 입사 각 [°]	도로 총 죄 소	.폭 40 반사평 최 대	[m] (수 차	평균 반사 횟수
경 사 각 [°]	최적 반· 입사 각 ()	도 종 최 소 00	본폭 20 반사흿 과 대) [m] 수 차	평균 반사 횟수	최적 반· 입사 각 [°]	도로 총 죄소 49	폭 40 반사황 최 대	[m] (수 차	평균 반사 횟수
경 사 각 [°] 90	최적 반 입사 각 ()	도로 종 취소 98 82	본폭 20 반사흿 과 대 575 575) [m] 수 차 477	평균 반사 횟수 202.2	최적 반· 입사 같 [°] 45	도로 총 죄소 48 40	폭 40 반사평 최 대 287 287	[m] (수 차 239 247	평균 반사 횟수 100.5
경 사 각 [°] 90	최한 입사 입사 () 45 40 35	도 5 종 최 소 98 82 69	본폭 2(반사휫 대 575 575 584) [m] 수 차 477 493 515	평균 반사 횟수 202.2 147.3 134.4	최적 반· 입사 각 [[°]] 45 40 35	도로 총 최소 48 40 34	.폭 40 반사평 최 대 287 287 291	[m] (수 차 239 247 257	평균 반사 횟수 100.5 75.5 66.6
경 사 각 [°] 90 100 110 120	최적 발 입 각 () 45 40 30	도 · · · · · · · · · · · · · · · · · · ·	발폭 20 반사횟 대 575 575 584 594) [m] 수 차 477 493 515 538	평균 반사 횟수 202.2 147.3 134.4 125.5	최적 반 입사 입사 [°] 45 40 35 30	도로 총 죄소 48 40 34 28	폭 40 반사 최 대 287 291 296	[m] (수 차 239 247 257 268	평균 반사 횟수 100.5 75.5 66.6 62.2
경 사 각 [[•]] 90 100 110 120	최적 발 입 각 (°) 45 40 35 30	도 5 종 취소 98 82 69 56	발폭 20 반사횟 대 575 575 584 594) [m] 수 차 477 493 515 538	평균 반사 횟수 202.2 147.3 134.4 125.5	최적 반· 입사 각 [°] 45 40 35 30	도로 총 최 소 48 40 34 28	폭 40 반사왕 외 대 287 287 291 296	[m]	평균 반사 횟수 100.5 75.5 66.6 62.2
정 사 각 [[°]] 90 110 120	적반 십 각 [] 적반 십 각 [] 45 40 35 30	도 5 종 최소 98 82 69 56	본폭 20 반사휫 대 575 575 584 594) [m] 수 차 477 493 515 538 560	평균 반사 횟수 202.2 147.3 134.4 125.5 191.6	최적 반 사 각 [] 45 40 35 30 21	도로 총 최소 48 40 34 28	폭 40 반시평 최 대 287 287 291 296	[m]	평균 반사 횟수 100.5 75.5 66.6 62.2
정 사 각 [[°]] 90 100 110 120	적반입각 () 45 40 35 30 20 20	도 5 종 최 소 98 82 69 56 46 36	본폭 20 반사횟 대 575 575 584 594 620) [m] 수 차 477 493 515 538 538 584	평균 반사 횟수 202.2 147.3 134.4 125.5 121.5	최 반·입사 김 산 [°] 45 40 35 30 220	도로 총 최소 48 40 34 28 22 17	폭 40 반시3 과 대 287 291 296 302 302	[m]	평균 반사 횟수 100.5 75.5 66.6 62.2 60.2
경사각 [[°]] 90 100 110 120 150	적 과반·입각 15	도 5 종 최소 98 82 69 56 40 36 26	본폭 20 반사횟 대 575 575 584 594 620 642) [m] 수 치 477 493 515 538 560 564 616	평균 반사 횟수 202.2 147.3 134.4 125.5 121.5 125.5	최반· 입사각 [[°]] 45 30 22,0 15	도로 총 최소 48 40 34 28 32 12	폭 40 반사 최 대 287 287 291 296 02 320	[m] 수 차 239 247 257 268 280 308	평균 반사 횟수 100.5 75.5 66.6 62.2 60.2 60.2
경 사 각 [*] 90 100 110 120 150 160	최반 라 입 45 40 35 30 27 28 15 10	도 5 종 최소 98 82 69 56 46 56 46 16	보폭 20 반사횟 대 575 584 594 642 678) [m] 수 차 477 493 515 538 500 560 616 662	평균 반사 횟수 202.2 147.3 134.4 125.5 121.5 121.5 134.5	최한·입사각 [°] 45 40 35 30 22 20 15 10	도로 총 최소 48 40 34 28 28 12 8	폭 40 반사3 3 대 287 287 291 296 30 320 338	[m] 수 차 239 247 257 268 290 308 330	평균 반사 횟수 100.5 75.5 66.6 62.2 60.2 60.2 60.2 60.2

(a) 경사각 90°

(b) 경사각 130°

(c) 경사각 140°

그림 6. 경사각, 도로폭, 반사각, 입사각에 따른 총 반사횟수 Fig. 6. Total reflection numbers by θ_ν, W_n, β_{sns}, β_{ct} (a) 경사각 90° (b) 경사각 130° (c) 경사각 140°.

시뮬레이션 결과의 특징을 정리하면 다음과 같다. ◈ 총 반사횟수를 최저로 할 수 있는 가시거리영역 최적 반사각은 모든 도로폭과 무관하고, 경사각에 반비례하여 경사각이 클수록 적어진다.

◈ 전파경로 손실의 가장 큰 원인중 하나인 평균 반사 횟수는 도로폭에 관계없이 경사각 135°~ 140°, 가시거리 영역 최종 반사각 20°~ 25°에서 가장 적고, 이들 각을 대칭으로 점점 증가한다. 결국, 전과의 유효전파비가 100%인경우, 모든 입사각과 반사각에서 이동국의 평균 수신전력을 최대로 하기 위한 직전 교차로의 경사각은 130°-140°범위, 가시거리 영역 최종 반사각은 20°~25°범위이다. 그러므로 마이크로셀 기 지국 위치는 서비스 영역의 도로상황과 주변 교차로의 경 사각에 따라 표 8로써 엄격히 규제되어야 한다.

3.2.3 반사파의 전파경로

가시거리 영역과 비가시거리 영역의 직진경로를 각각 1km 로 할 때, 입사각과 반사각 그리고 도로폭과 경사각에 따라 값을 달리하는 각 영역에서의 전파경로와 총 전과경로는 식 (7)에 의해 구할 수 있고, 그 결과는 표 9, 그림 7과 같다.

표 9. 최적 반사각과 전파경로 그리고 경사각

Table 9. Optimal reflection angle, propagation path and sloping angle.

직진경로 2,000[m]

7 사각	최적	총	전파경드	총 전파경로	
! °]	반사 과(^]	최저	최고	차	평균[m]
90	45	2828	12478	9650	4941
100	40	2611	12478	9867	4035
110	35	2442	12509	10067	3767
120	30	2309	12577	10268	3638
. 130	. 25 -	2202	2695	10488	2583
140 7	20	2128	12888	10760	3583
150	15	2071	13217	11146	3638
160	10	2031	13840	11809	3767
170	5	2008	15337	13329	4046

그림 7, 경사각, 반사각, 입사각에 따른 총 전파경로 Fig. 7. Total propagation paths by θ_v , β_{say} α_{cl} .

표 9의 결과, 가시거리 영역에서와 마찬가지로 비가시 거리 영역에서도 전파가 반사에 의해 실제 이동한 전파 경로는 도로폭과 무관하지만, 총 전파경로는 최종 반사각 에 비례하여 각이 클수록 짧아진 것만은 아니다. 최종 반 사각 그리고 경사각에 따라 그 값을 달리하는 총 전파경 로의 특징을 정리하면 다음과 같다.

◈ 동일한 경사각에서 최종 반사각이 같을때, 총 전파 경로는 도로폭에 관계없이 일정하다.

◈ 동일 경사각에서 총 전과경로는 가시거리 영역 최종 반사각과 비가시거리 영역 최초 입사각이 동일할 때 최 소이고, 그 각을 중심으로 대칭 분포하여 점점 증가한다.

◈ 총 전파경로는 경사각 140°까지는, 경사각이 쿨수록 감소하였으나 그 이상에서는 증가한다.

◈ 유효파수비를 100%로 하기 위한 경사각은 90°이상 이다.

◈ 전파의 경로손실을 최소로 할 수 있는 경사각은 135°±5°범위이다.

이상의 반사파 직진경로와 전파경로의 시뮬레이션 결과, 비가시거리 영역에서 인접 기지국간 신호간섭과 경로손 실을 최소화하여 서비스 농률을 보다 향상시키기 위한 이동통신 마이크로셀 기지국의 최적 위치는 전파의 입사 각과 반사각, 직진 교차로의 경사각, 도로폭에 따라 각각 달라지므로 표 7, 표 8, 표 9로써 엄격히 규제되어야 한다

IV. 결 론

마이크로셀 또는 피코셀 이동통신 전파환경에서 인접 기지국간 신호간섭을 최소화하여 최소 출력으로 서비스 능률을 보다 향상 시킬 수 있는 최적 기지국 위치선정 조건을 제시하기 위해 삼각해석법 알고리즘을 제안하고 시뮬레이션한 결과는 다음과 같다.

* 가시거리 영역에서 전파경로는 도로폭과 무관하며 도로폭이 클수록 반사횟수가 적고, 동일 도로폭에서 반사 횟수는 전파의 입사각과 반사각이 적을수록 줄어들어 경 로손실이 최소화된다.

결국, 최적 기지국의 위차는 셀내 주변 도로망의 폭에 따라 결정되어야하며 자세한 결과는 표2, 표 4와 같다.

◈ 비가시거리 영역에서 전과경로는 전파의 입사각과 반사각, 직진교차로의 경사각 그리고 도로폭에 따라 각각 다르며, 교차각 90°이상에서 100%의 유효전파비를 갖고, 전파 경로손실을 최소로 할 수 있는 경사각의 범위는 135°±5°이다.

결국, 최적 기지국의 위치는 셸내 교차로의 경사각과 도로망의 폭에 따라 달라지며 자세한 결과는 표 7, 표 8, 표 9와 같다.

이상의 결과, 마이크로셀 또는 피코셀 이동통신 시스템 셀 설계에 있어서, 최소 출력으로 양질의 전송품질과 서비스 를 제공하기 위해서는 전과경로 상 도로폭, 전파의 입사 각과 반사각 그리고 가시거리 영역과 교차하는 비가시거 리 영역의 경사각이 중요한 파라미터임을 확인할 수 있다. 최적 기지국 위치 선정을 위한 또 다른 방법으로써 기 지국의 출력에 따른 임의의 수신점에서의 수신 전계강도 를 예측할 수 있는 모델을 개발할 필요가 있다.

참 고 문 헌

- Joseph samecki, C.Vinodrai, Alauddin Javed, Patrick O'kelly and Kevin Dick, "Microcell Design Principles," IEEE Communications Magazine, pp.76-82, April, 1993.
- F.Ikegani, T.Takeuychi, and S.Yoshida, "Theoretical prediction of mean field strength for urban mobile radio," IEEE Trans. Antennas Propagat. Vol.AP-39, pp.299-302.1991.
- T.Iwama and M.Mizuno, "Perdiction of propagation characteristics for microcellular land mobile radio," Proc. ISAP, pp.421-424, Sapporo, Japan,1992.
- V.Erceg, S.Ghassemzadh, M.Taylor, D.Li, and D.L.Schilling, "Urban/-suburban out-of-sight propagation modeling," IEEE Comm. Mag., pp.56-61, Jun,1992.
- S. Y. Tan and H. S. Tan, "A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory," IEEE Trans. Antennas Propagat. Vol.44, pp. 1317-1326, Oct, 1996
- K. R. Schaubach, N. J. Davis, IV, and T. S. Rappaport, "A ray tracing method for predicting path loss and delay spread in microcelluar environments," in 42nd IEEE Veh Technol. Conf. Debnver, CO. May. 10-13, 1992, Vol. 2, pp. 932-935
- Grey Lampard, Tuong Vu-Dinh, "The Effect of Terraon on Radio in Urban Microcells," in Proc., IEEE, pp.314-317, Nov, 1993.
- 방성렬, "도심 지역의 전과전과 예측모델" 공학박사 학위논 문, 조선대학교,1995년
- 9. 김송민, 박창균, "이동통신의 음영지역 전파환경 개선," 한국 음향 학회 Vol. 15 No. 3., pp. 89-96.1996.
- 박성렬, 박창균, 임영석, "이동통신 환경에서의 전과전과 모 델," 한국음향학회 논문지, pp89-96, June, 1996.
- 노순국, 박창균, 임영석, "도십 환경에서의 전파전과 예측 모델," 1996년도, 한국통신학회 하계종합학술발표회 논문집, pp1524-1529, June, 1996.
- 12. 김재섭, 박창균, "교외지역 전파환경을 위한 예측 모델 제안," 한국음향학회 논문지, pp49-56, May, 1997.
- 13. 김재섭, "LMDS방식의 무선 CATV 전 파환경에 관한 연구" 공학박사 학위논문, 조선대학교,1997년
- 14. 김인환, 박창균, "이동통신의 CDMA 기지국과 Analog FM 이동국의 상호간 섭애 관한 연구," 한국음향학회 Vol. 14, No. 3., pp.105-113., 1995.
- 16. 장광록,김효태, "전파송출법의 계산효율 개선에 관한 연구," Telecommunication Review, 제6권, 제3호, pp.698-714, 1996.
- M. C. Lawton and J. P. McGeehan, "The applications of a deterministic ray launching algorithm for the prediction of radio channel characteristics in small-cell environments," IEEE Trans. Veh Tecnol., vol. 43, pp. 955-969, Nov.1994.

▲노 순 국(Sun Kuk Noh) 1969년 9월 9일생 1995년 2월: 조선대학교 공과대학 전자공학과 (공학사) 1997년 2월: 조선대학교 대학원 전자 공학과 (공학석사) 1997년 3월~현재: 조선대학교 대학원 전자공학과 박사과정 ※ 주판심 분야: 디지털통신이론, 이동

통신, 전파전파 등

▲박 참 균(Chang Kyun Park) 1944년 1월 25일생

전기공학과 (공학사) 1979년 2월:동국대학교 대학원 전자 공학과 (공학석사) 1999년 2월:전남대학교 대학원 전자

1968년 2월:조선대학교 공과대학

1977년 2월, 현리네이프 데이철 현사 공학과 (공학박사) 1974년 3월~현재:조선대학교 공과

대학 전자정보통신공

학부 교수

※ 주관심 분야: 통신이론, 이동통신, 전파전파 등