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Abstract Hydrolysis of EFB (empty fruit bunch) derived
from oil palm was studied using crude enzyme from
Aspergillus terreus IMI 282743 along with commercial
enzymes from Trichoderma reesei and Aspergillus niger.
Hydrolysis at 40°C and 50°C with a-cellulose or EFB gave
significantly lower yield when commercial enzymes of T.
reesei and A. niger were used and the hydrolysis time
extended beyond 10 h. After 24 h of hydrolysis at 40°C and
50°C, the filter paper activity (Fpase) from A. ferreus retained
as much activity as A. niger and it was significantly higher
than 7. reesei. Glucose concentration of 0.25% and 0.5%
caused significant inhibition in the crude enzyme, but in
regards to the commercial enzymes it only showed a slight
effect. Crude enzymes from A. terreus could produce the
highest reducing sugars when compared to commercial
enzymes from 7. reesei or A. niger. Nevertheless, low yield of
sugar was observed for EFB for all treatments.
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Malaysia is one of the leading producers of palm oil. In
1997, there was a total area of 2.74 million hectares of land
under oil palm [2] with an yield of 19.10 tons per hectare.
Crude palm oil is obtained from mesocarp of the fruits
and, depending on the variety and age of the palm, the oil
for bunch ratio is within the range of 25-28% [1].
Consequently, there is an abundance of empty fruit bunch
which could affect the environment if it is not managed
properly.

Analysis by the Forest Research Institute Malaysia has
shown that empty fruit bunch (EFB) is composed of 68.3%
holocellulose; 41.9% o-cellulose; 20.3% pentosan; 13.2%
lignin, and 3.6% ash. Thus, EFB is a potential source of
cellulose that could be used as the substrate in an
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enzymatic hydrolysis for the production of fermentable
sugars and other products [19, 9].

In this study, EFB was used as a viable cellulosic
substrate for hydrolysis with the use of crude and
commercial enzyme at two different temperatures (40° and
50°C). An addition of glucose was also studied to
recognize the inhibitory effect on the enzymatic hydrolysis
in the presence of reducing sugar products.

MATERIALS AND METHODS

Microorganisms

A. terreus IMI282743 was identified as a local isolate [22]
and maintained on potato dextrose agar (PDA) slant at an
ambient temperature. The fungus was subcultured monthly
to maintain stability.

Shake Flask Cultivation

The organism was subcultured on a PDA slant for 4 days at
30°C. Spores at a concentration of 10’ were used to
inoculate 250 ml enriched Mandels medium using o-
cellulose (o-cellulose fiber, approximately 99.5%, Sigma
Chemical Co.) as the carbon source at 1% concentration
[15]. Shake flask cultures were carried out in 11 conical
flasks in a Gallenkamp orbital shaker at a speed of
150 rpm at 30°C.

Crude Enzyme

Crude enzyme was prepared by harvesting a 6 days old
culture through centrifugation at 10,000 xg for 15 min using
Sorvall RC5B of the refrigerated superspeed centrifuge.
The supernatant was then concentrated at 1:5 with
Amicon's CH2 SP3 Hollow fibre concentrator. Commercial
enzymes, T. reesei (celluclast), was obtained from Novo
Industries A/S, Denmark and A. niger was from Calbiochem-
Behring corp., and they were prepared in a standard assay
buffer solution and desalted by passing through Sephadex
G-25 before use.



Hydrolysis

The empty fruit bunch (EFB) was dried in an oven (60°C)
for a day and the size was reduced by using the
commercial Waring blender. Hydrolysis was carried out in
a conical flask (250 ml) containing 1% of substrate and
cellulase (10 U Fpase) in 100 ml 50 mM citrate buffer (pH
4.8) with sodium azide (0.01%). The flask was then shaken
at 150 rpm in a Gallenkamp Orbital Shaker at 40°C or
50°C. After 24 h, the samples were determined for Fpase
activity, reducing sugars, and percentage of saccharification.
The percentage of saccharification [13] was estimated as
equivalent reducing sugars (mg/ml) x 0.9 x 100/substrate
(mg/ml). Likewise, the percentage of Fpase activity [5]
after 24h was equal to Fpase (U/ml) after 24 h/Fpase
activity at time 0 x 100.

Analysis

Fpase activity was determined according to the method of
Mandels et al. [14] using a strip of 50 mg Whatman no.1
as substrate. One U (unit) was defined as 1 pmol of glucose
equivalent released as quantitated by Somogyi-Nelson
[18]. The glucose released was determined by using a
glucose diagnostic kit no. 510 (Sigma Chemical Co.)

RESULTS AND DISCUSSION

The glucose and reducing sugars produced during the
hydrolysis showed a similar profile (Figs. 1 and 2) in
which most of the sugars are produced in a period of
approximately 4 to 8 h and stabilized after 24 h, except for
hydrolysis by crude enzymes of A. terreus which was still
progressing significantly for 48 h. Crude preparations
yielded higher hydrolysis compared to pure enzyme where
the rate of hydrolysis is low, as explained by Matsuno et al.
[16]) and Tanaka et al. [20) due to its limitation of
synergistic activity.

When crude enzymes were used on o-cellulose as the
substrate, the glucose content was shown to be 2.66 mg/ml
which amounted to 97.5% of the total reducing sugars
produced. Similarly, when EFB (empty fruit bunch) was
used, the glucose content was 97.1%. In contrast with
commercial enzyme from 7. reesei, glucose production
represented only 53.2% of the reducing sugar when o-
cellulose was used and 52.6% when used with EFB. The
reason for this might be due to the low B-glucosidase
activity in 7. reesei [17] and Celluclast from T, ressei,
which has also been reported to have a low B-glucosidase
activity [4]. A low B-glucosidase activity accumulates
cellobiose, an intermediate of cellulose hydolysis which is
an inhibitor of the cellulases [3, 7]. On the other hand,
some enzyme activity could be lost due to the adsorption
onto the undigested substrate [16]. However, since the
substrate used is only 1%, the loss may not be a main
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Fig. 1. Hydrolysis of EFB and o-cellulose at 50°C using crude
enzyme of A. ferreus, and commercial enzymes of T, reesei and
A. niger.

contributing factor. The use of commercial enzyme from
A. niger on o-cellulose was able to produce 82.2% of
glucose from the total reducing sugar and 80.3% from EFB
within 24 h.

The remaining filter paper activity was higher at 40°C as
compared to 50°C (Table 1). Although sugar production
was slighty higher at 50°C for A. terreus and A. niger,
FPase from A. terreus retained as much activity as A. niger
and showed signs of being significantly higher than 7.
reesei, suggesting a better stability for the enzymes.
MacKenzie er al. [11] have reported a 50% reduction in the
filter paper activity (FPase) in regards to enzymes of T.
reesei when used beyond 24 h at 50°C. The temperature of
40°C has been shown to be optimal for Celluclast [5].

The effect of glucose addition on the production of
reducing sugar (0.1%, 0.25%, and 0.5%) can be seen in
Table 2. In all cases, the effect of glucose addition was
observed to be pronounced only after 8 h of hydrolysis and
was dependant on the concentration of glucose used. The
time lapse of the reaction might be caused by the delay
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Fig. 2. Hydrolysis of EFB and oa-cellulose at 40°C using crude
enzyme of A. terreus, and commercial enzymes of 7. reesei and
A. niger.

effect on the enzyme that brought about changes in the
structure of the substrate which make it more susceptible
to inhibition {10, 16]. Howell and Mangat [8] has reported
that the effect of end-product inhibition is active after 8-
12 h of hydrolysis. Glucose not only inhibits hydrolysis,
but also promotes desorption by specifically binding to
cellulase {16].

When o-cellulose was used with crude enzyme and the
commercial enzymes from 7. reesei and A. niger, the
percentage of saccharification (Table 3) was found to be
24.58, 19.09, and 14.67, respectively, while for EFB it was

Table 1. The effect of temperature on the percentage of Filter
paper activity and the production of reducing sugars after 24 h
hydrolysis.

Reducing sugar
production (mg/ml)

Hydrolysis  Enzyme % of Fpase
temperature source activity a-cellulose EFB
40°C A. terreus 83.3 2.43 0.64
T. reesei 56.2 2.13 0.39
A. niger 87.6 1.03 0.25
50°C A. terreus 66.7 2,73 0.92
T. reesei 312 2.12 0.56
A. niger 69.2 1.63 0.37

Table 2. The effect of glucose addition after 24 h hydrolysis on
the percentage of reducing sugar production.

a-Cellulose EFB
Glucose conc. (%) Glucose conc. (%)
01% 025% 05% 0.1% 0.25% 0.5%

Crude enzymes 98.3% 64.4% 30.5% 96.7% 68.7% 45.0%
of A. terreus
Commercial
enzymes of
T reesei

Commercial
enzymes of
A. niger

Enzyme

83.8% 75.0% 72.0% 82.0% 70.8% 67.7%

97.8% 80.2% 78.3% 89.0% 77.8% 75.1%

8.25, 5.00, and 3.30, respectively. The presence of 10.5%
lignin in EFB might be the reason for the low percentage
of saccharification [12]. The addition of 0.1% glucose for
2h of hydrolysis showed a minimal effect on the
percentage of saccharification of the Aspergillus as
compared to Trichoderma (Table 3). However, the addition
of 0.25% and 0.5% for the same period of time seems to
have a significant inhibition on the crude enzyme compared
to the commercial enzymes. It has been reported that
glucose inhibits P-glucosidase activity [6,21], and a
system with low B-glucosidase activity like Celluclast [4]
is more prone to the inhibition, as explained earlier [3, 7].
However, according to the result (Table 3), this seems to be
true only when 0.1 or a higher percentage of glucose was
used, but at a higher concentration level the crude enzyme

Table 3. The effect of glucose on the percentage of saccharification of o-cellulose and EFB by crude enzyme of A. terreus (*),
commercial enzyme of 7. reesei ('), and commercial enzyme of A. niger () for 2 h of hydrolysis.

Percentage of saccharification

Glucose conc. (%) o-cellulose* EFB* o-cellulose* EFB’ o-cellulose” EFB’
0 24.58 8.25 19.09 5.00 14.67 3.30
0.1 24.17 7.98 16.00 4.10 14.35 2.94
0.25 15.83 5.67 14.31 3.54 11.76 2.56
0.5 7.50 3.72 13.75 3.39 11.49 2.48




appears to be more sensitive. This suggests that the
enzyme is less tolerant to glucose only at higher than 0.1%.
The accumulation of glucose is a factor that has to be
reckoned with during the saccharification of substrates.

CONCLUSIONS

The present study conducted at 40°C and 50°C demonstrated
that the enzyme preparation from Aspergillus terreus IMI
282743 gave an improved hydrolysis of either a-cellulose
or EFB, as compared to commercial enzymes isolated
either from Trichoderma reesei or Aspergillus niger.
However, the addition of glucose higher than 0.1% could
hinder the hydrolytic activities more than the commercial
enzymes. The presence of higher B-glucosidase activity in
the A. terreus preparation could explain the reason for the
sensitivity.
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