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Vibration Analysis of Curved Beams Using Differential Quadrature
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ABSTRACT

The differential quadrature method (DQM) is applied to computation of eigenvalues of the
equations of motion governing the free in—plane and out-of-plane vibrations for circular curved
beams. Fundamental frequencies are calculated for the members with various end conditions and
opening angles. The results are compared with existing exact solutions and numerical solutions
by other methods (Rayleigh-Ritz, Galerkin or FEM) for cases in which thev are available. The
differential quadrature method gives good accuracy even when only a limited number of grid
points is used.
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1. Introduction highway bridges, ships, and aircraft has re-
sulted in considerable effort being directed to-
The increasing use of curved beams in ward developing na accurate method for anal-
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yzing the dynamic behavior of such struc-
tures. Accurate knowledge of the vibration re-
sponse of curved beams in of great impor-
tance In many engineering applications such
as the design of machines and structures.
Owing to their importance, the dynamic beha-
vior of curved beams has been the subject of
a large number of investigations. Solutions of
the relevant differential equations have traditi-
onally been obtained by the standard finite
difference method or finite element method.
These techniques require a great deal of com-
putation time as the number of discrete nodes
becomes relatively large under conditions of
complex geometry and loading. In many cases,
the moderately accurate solution which can be
calculated rapidly is desired at a few points in
physical domain. However, in order to get re-
sults with even only limited accuracy at or
near a point of interest for a reasonably com-
plicated problem, solutions ofter have depen-—
dence of the accuracy and stability of the
mentioned methods on the nature and refine-
ment of the discretization of the domain.

The early investigators into the in-plane
vibration of rings were Hoppe” and Love®.
Love” improved on Hoppe's theory by allow-
ing for stretching of the ring. Lamb® inve-
stigated the statics of incomplete ring with
various boundary conditions and the dynamics
of an incomplete free—free ring of small cur-
vature. Den Hartog“ used the Rayleigh-Ritz
method for finding the lowest natural frequ-
ency of circular arcs with simply supported or
clamped ends and his work was extended by
Volterra and Morell” for the vibrations of ar-
ches having center lines in the form of cy-
cloids, catenaries or parabolas. Archer® carried
out for a mathematical study of the in-plane
inextensional vibrations of an incomplete cir-
cular ring of small cross section with the
basic equations of motion as given in Love?
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and gave a prescribed time-dependent displa-
cement at the other end for the case of cl-
amped ends. Nelson” applied the Rayleigh-
Ritz method in conjunction with Lagrangian
multipliers to the case of a circular ring seg-
ment having simply supported ends. Auciello
and De Rosa® reviewed the free vibrations of
circular arches and briefly illustrated a num-
ber of other approaches. Qut-of-plane vibra-
tions of complete and incomplete rings have
been the subject of interest for several rese-
arch workers. Ojalvog) obtained the equations
governing three~dimensional linear motions of
elastic rings and results for generalized load-
ings and viscous damping making use of
usual classical beam-theory assumptions for
the clamped ends. Rodgers and Warner'”
calculated the frequencies of curved elastic
rods with simply supported ends.

A rather efficient alternate procedure for
the solution of partial differential equations is
the method of differential quadrature which
was introduced by Bellman and Casti'”. This
simple direct technique can be applied to a
large number of cases to circumvent the diffi-
culties of programming complex algorithms for
the computer, as well as excessive use of
storage. This method is used in the present
work to analyze the free in-plane inexten-
sional vibrations and the out-of-plane twist-
bending vibrations of curved beams with va-
rious boundary conditions and opening angles.
The lowest frequencies are calculated for the
member. The curved beams considered are of
uniform cross section and mass per unit of
length and are either clamped or simply sup-
ported at both ends. Numerical results are
compared with existing exact solutions and
numerical solutions by the Rayleigh-Ritz, Gal-
erkin or the finite element methods.

2. Governing Equations
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The uniform curved beam considered is
shown in Fig.1l. A point on the centroidal
axis is defined by the angle 6, measured
from the left support. The tangential and
radial displacements of the arch axis are v
and w, respectively. u is the displacement at
right angles to the plane of the arch, a is the
radius of the centroidal axis, and 8 is the
angular rotation of a cross section of the pr-
incipal axes about the tangential axis. These
displacements are considered to be positive in
the directions indicated.

2.1 In-plane inextensional vibrations of thin
curved beams

A mathematical study of the in-plane inex-
tensional vibrations of a curved beam of small
cross section is carried out starting with the
basic equations of motion as given by Love”.
Following Love, the analysis is simplified by
restricting attention to problems where there
is no extension of the center line. This con-
dition requires that w and v be related by

e OV e
w=="55 (1)

If rotatorv inertia and shear deformation are
neglected, the differential equation governing
the free flexural vibration of this curved be-
am, in terms of the displacement v, can be
written as (Love")

S G fri)
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V\6|+2 V:'+ V')' _ mada)z(v_ V)
X 0 05 EI 85
............................................................... (3)

in which each prime denotes one differen-
tiation with respect to the dimensionless dis-
tance coordinate, X, defined as
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Here, m is the mass per unit length, v is the
displacement in the direction of increasing 9,
6 is the opening angle for the curved beam,
w is the circular frequency of vibration of the
system, E is the Young's modulus of elasti-
city for the material of the arch, and I is the
area moment of inertia of the cross section.

If the curved beam is clamped at 8 =0 and
8 = B¢, then the boundary conditions take the
form

V:'O ................................................ (5)
C OV ) s
w=—-25=0 (6)
gé\g ..|.V—~0 .................................... (7)

at =0and 6 =0 or
V)=V (0)=v"(0) =KLGg)=Vv( &)

If the curved beam is simply supported,
then the boundary conditions can be expres-—
sed in the following form

N SO 9)
e OV ) e,

w=—"55 =0 10
aa-ﬁvg FW ) creeereenre e 11

or
v(0)=v(0)=v""(0)=v(8e)=v"(8y)
:V’”(go)zo ........................... (12)

2.2 Coupled twist-bending vibrations of thin
curved beams

The differential equation can be written as
(Ojalvo”)

o' aze_x( 8 %u 623)
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where k is the stiffness parameter GJ/EI, G is
the shear modulus, J is the torsion constant
of the cross section, x is a dimensionless
parameter, related to the circular frequency of
vibration of the system, @, and the moment-
displacement relation can be expressed as
x:wz%i, z%(aﬂ—u”) ...... an
The boundary conditions for simply sup-
ported and clamped ends are, respectively,

3. Differential Quadrature Method

The Differential Quadrature Method was
introduced by Bellman and Casti'’. By for-
mulating the quadrature rule for a derivative
as an analogous extension of quadrature for
integrals in their introductory paper, they pro-
posed the differential quadrature method as a
new technique for the numerical solution of
initial value problems of ordinary and partial
differential equations. It was applied for the
first time to static analysis of structural com-
ponents by Jang et al'?. The versatility of
the DQM to engineering analysis in general
and to structural analysis in particular is be-
coming increasingly evident by the related
publications of recent years. Kukreti et al®
calculated the fundamental frequencies of
tapered plates, and Farsa et al¥ applied the
method to analysis and detailed parametric
evaluation of the fundamental frequencies of
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general anisotropic and laminated plates. In
another development, the quadrature method
was introduced in lubrication mechanics by
Malik and Bert®®. Han and Kangls) applied the
method to the buckling analysis of circular
curved beams. From a mathematical point of
view, the application of the differential qua-
drature method to a partial differential equa-
tion can be expressed as follows:

LG} = [ W, £(x)

for iY j=17 2Y R N o 20)
where L denotes a differential operator, xj
are the discrete points considered in the
domain, f(x;) are the function values at these
points, Wj; are the weighting coefficients atta-
ched to these function values, and N denotes
the number of discrete points in the domain.
This equation, thus, can be expressed as the
derivatives of a function at a discrete point in
terrns of the function values at all discrete
points in the variable domain.

The general form of the function f(x) is
taken as

f.(x)=x5"! for k=1,2 3 - N - (21
If the differential operator L represents an
n™ derivative, then

ilw X ’k*l = (k— 1)(}(— 2)(k—n)x E(*n—l

“
for i, k=1, 2, -, N coerremmmrireremieiiescniiinnn (22)

This expression represents N sets of N
linear algebraic equations, giving a unique
solution for the weighting coefficients, Wj,
since the coefficient matrix is a Vandermonde
matrix which always has an inverse, as des-

cribed by Hammingm.

4. Application

The method of differential quadrature is
applied to the determination of the in-plane
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and out-of-plane vibrations of curved beams.
The differential quadrature approximations of
the governing equations and boundary condi-
tions are shown.

4.1 In-plane inextensional vibrations of thin
curved beams

Applying the differential quadrature method
to equation(3) gives

6—18 pA Fii"i‘*‘% gDﬁU/*‘élz gBiﬂ/;‘

__ma w CU .........
~ (90 ﬁB,,y, ) (23)

where Bj, Dy and Iy are the weighting co-
efficients for the second-, fourth-, and sixth-
order derivatives, respectively, along the dim-
ensionless axis.

The boundary conditions for clamped ends,
given by equation(8), can be expressed in dif-
ferential quadrature form as follows:

v =0 At X=0  eeeeeeeeen (24)
v =0 IR o T (75)
JﬁlAzjVJ‘:O at X=0+8 oo (26)
gaA(r\'AmV,:O at X=1—8 creeeeeer 7
21B3jvj:0 at X=0+28 «eeeer 98)
EB(N~'2)jVj:0 At X=1-28 oo (99)

Similarly, the boundary conditions for sim-
ply supported ends given by equation(12), can
be expressed in differential quadrature form
as follows:

v 1:0 at X=() cerereeereneens (30)
v N:O at X:l ............... (31)
2A 5v ;=0 at X=0+§ -rereeee (32)
=

ngA (Nfl),'Vj:O at X=1-—8 e (33)
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2(: (n—gyV ;=0 at X=1-28 =eeeee (35)
=

at X=0+28 oo (34)

where A and C; are the weighting coeffi-
cients for the first- and third-order denva-
tives. Here, 6 denotes a very small distance
measured along the dimensionless axis from
the boundary ends. This set of equations to-
gether with the appropriate boundary condi-
tions can be solved for the in-plane inexten-
sional free vibrations.

42 Coupled twist-bending vibrations of thin
curved beams

Applying the differential quadrature method
to equatlons 15) and (16) gives

H ﬁ\D"B + 5 2B“B + 8,

xiui
a

—1(2) ﬁleiui
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The boundary conditions for simply sup-
ported ends, given by equation(18), can be
expressed in differential quadrature form as

follows:
6]20 and Zl1=0 at X=0---veereene (38)
Br=0and ux=0 at X=1--- (39
2}8 au ;=0 at X=0+8 - (40)
=

ﬁlB(Nﬂ)J‘u,’:O at X=1--8 - 41)
=

Similarly, the boundary conditions for clam-
ped ends, given by equation(19), can be ex-—
pressed in differential quadrature form as
follows:

B1=0 and u,=0
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BNZO and uI\'=0 at X=1 --eeee (43)

2A 2jUj:O at X=0+§¢ (44)
y=

ﬁ:\A n—piu ;=0 at X=1—6 - (45)

5. Numerical results and compari-
sons

Based on the above derivations, the funda-
mental natural frequencies of the in-plane and
out-of-plane vibrations are calculated by the
differential quadrature method and are pre-
sented together with existing exact and nu-
merical solutions by other methods. All results
are computed with thirteen discrete points
along the dimensionless axis since the optimal
value for N is found to be thirteen discrete
points.

5.1 In-plane inextensional vibrations of thin
curved beams

The fundamental frequency parameter of
this curved beam is calculated by differential
quadrature and is presented together with re-
sults from other methods: exact solutions by
Archer®, the Lagrangian multiplier technique
by Nelson”, Galerkin, Rayleigh-Ritz, or finite
element methods. The results are summarized
in Tables 3, 5, and 6 using 6 =1X10 3

Tables 1 and 2 present the results of con—
vergence studies relative to the number of
grid points N and the & parameter, res-
pectively. Table 1 shows that the accuracy of
the numerical solution increases with increa-
sing N and passes through a maximum. Then,
numerical instabilities arise if N becomes toco
large. The optimal value for N is found to be
11 to 13. Table 2 shows the sensitivity of the
numerical solution to the choice of &. The
optimal value for & is found to be 1x107° o
1%10°° which is obtained from trial-and-
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error calculations. The solution accuracy de-
creases due to numerical instabilities if &
becomes too small.

Table 1 Fundamental frequency parameters, 2=
(ma*fEN"?, for in~plane vibration of thin curved
beams with clamped ends including a range
of grid point, 80,=180°

Archer” . .
Number of grid points
(Exact)
Q2=w(ma'/ED'* 7 9 11 13
4.3341 50586 | 41740 | 4.3975 | 4334

Table 2 Fundamental frequency parameters, Q=
(ma*/EN"™, for in-plane vioration of thin curved
beams with clamped ends including a range

of &, 8,=180°
Archer” s
(Exact)
2=olma/ED'* | 1X107 | 1x107* 1 1107} 1 X107 | 1x10™"
43841 48845 | 4.4301 | 4.3885 | 4.3844 | 4.3840

Table 3 Fundamental frequency parameters, 2=
(ma*EN", for in-plane vibration of thin curved
beams with clamped ends

9 2= w(ma' /ED"*

degrees Archer” | Galerkin | Rayleigh- SAP IV DQOM

(Exact) Ritz | finite element

30 22818 222.36 222.36 222.358
60 55.221 33737
90 23295 22624
120 12.225 11.847
150 7.194 6.938
180 4384 4539 4384
270 1.3% 1.3%
324 0.789 0783
360 0.566 0.566

Auciello and De Rosa® determined the

natural frequencies of the arches using the
SAP IV or SAP 9 finite element method
(FEM). Tables 3 and 5 show that the nu-
merical results by the DQM are in excellent
agreement with those by the SAP IV FEM.
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However, the SAP IV FEM was quite expen-—
sive because 60 finite elements were em-
ployed, as described by Auciello and De
Rosa’. Table 4 presents the first four nondi-
mensional free vibration frequencies by DQM
without comparison, since no data are avai-
lable.

Table 4 First four frequency parameters, 2=o(ma¥
E)', for in-plane vibration of thin curved be-
ams with simply supported ends, 8,=30"

2=w(ma' /ED"* Ravleigh-Ritz DQM
2, 14153 141536
Q- 306,634
2 589.323
Q4 804.063

Table 5 Fundamental frequency parameters, 2=
{ma"/EN", for in-plane vibration of thin curved
beams with simply supported ends

8o, 2=ow(ma'/ED"*

degrees | Nelson'' | Galerkin Rayleigh- SAP IV DQM

Ritz finite element

30 141.33 14153 14133 141.536
60 33636 | 33727 33627
X0 13764 | 13765 13764
120 6.928 6.927
130 3.860 389
180 2267 2.268 2267
240 0818 0818

Table 6 Fundamental frequency parameters, 2=w
(ma’ /EN"?, for in-plane vibration of thin curv-
ed beams with clamped-simply supported ends

8o, 2=w(ma' /ED"*

degrees SAP90, finite clement DQM
30 178945
60 42.942 2.942
. 17.871
120 9.216 9.210
150 5.299
180 3.238 3.24
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From Tables 3, 5, and 6, the natural fre-
quencies of the member with clamped ends
are much higher than those of the member
with simply supported ends and those of the
member with simply supported clamped ends,
and the frequencies can be increased by de-
creasing the opening angle.

5.2 Coupled twist-bending vibrations of thin
curved beams

The values of x corresponding to the na-
tural frequencies of out-of-plane vibration are
calculated by the differential quadrature me-
thod and presented together with results ob-
tained by other methods: the exact solutions
by Oja]vog) and Rodgers and Warner'”. Tables
7 and 8 show the fundamental natural fre-
quency parameters with variations in stiffness
parameter k for clamped ends and simply
supported ends.

Table 7 Fundamental frequency parameters, x =w?

ma'/GJ, for out-of-plane vibration of thin cur-
ved beams with clamped ends

x = w'ma' /G]
8a k=GJ/El -

Oialvo’ DQM
0.005 47.60 4760
0.2 13.36 13.36
180° 03 6.334 6.334
1.0 3.375 3.375
1.625 2.134 2131
0.005 3.304 3.305
0.2 1646 1.646
270 05 0.955 0.955
1.0 0.578 0578
1.625 0.394 0.394
0.005 0.434 0.44
0.2 0.335 0.335
360 05 0.253 0.253
1.0 0.192 0.192
1.625 0.153 0.153
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Table 8 Fundamental frequency parameters, x =o”

ma'/GJ, for out-ot-plane vibration of thin cur-
ved beams with simply supported ends; 6o=

90
2 = w'ma’/GJ
B0 k=GJ/EL m
Rodgers and Warner DQM
0.005 35.29 3529
02 20.0 20.0
90" 05 120 12.0
1.0 7.20 7.20
1625 4.80 4.80

6. Conclusions

The differential quadrature method was
used to compute the eigenvalues of the equ-
ations of motion governing the free in-plane
and out-of-plane vibrations of curved beams.
The present method gives results which agree
very well (less than 0.3%) with the exact
ones and with numerical solutions by other
methods for the cases treated while requiring
only a limited number of grid points.

The study reported herein i1s sponsored by
KRF (Korea Research Foundation) 97 rese-
arch funds.
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