${ }^{1}$ H NMR Spectra of Some Amines Coordinated to the Paramagnetic Polyoxometalate, $\left[\mathrm{SiW}_{11} \mathrm{Co}^{\mathrm{II}} \mathrm{O}_{39}\right]^{6-}$

Byung Ahn Kim and Hyunsoo So*
Department of Chemistry, Sagang Inwersity, Seoul 121-742, Korea
Recenved May 7, 1999

Abstract

${ }^{1}$ H NMR spectra of methyl-. ethyl-. propyl-. isopropyl-. butyl-. N-methylethyl-, N-methylpropyl-. and N-methylisopropylamine coordinated to the paramagnetic ll-tungstocobalto(IL) silicate anion ($\mathrm{SiW}_{11} \mathrm{Co}$) in dimeth-ylsulfoxide- d_{6} or dimethylfomanide-d- are reported. For these complexes the ligand exchange is slow on the NMR time scale and pure ${ }^{1} \mathrm{H}$ NMR signals have been observed at room tenperature. No complex is detected in $\mathrm{D}_{2} \mathrm{O}$. From the pseudocontact shifts of the CH_{2} and CH_{3} groups in ethylamine the energy of the grauche conformers with respect to the anti confomer is estimated. Two diastereotopic protons in the CH_{2} group of N -methylethylamine have quite different chemical shifts especially at low temperatures (e.g. 48.5 ws .19 .4 ppm at $-10^{\circ} \mathrm{C}$). This may be attributed mainly to the different positions of the two protons in the most stable (gauche) conformer.

Introduction

The chemistry of heteropolyanions of tungsten and molybdemum continues to attract much attention, particularly with respect to potential catalytic activity. but also with respect to biological and medical applications. ${ }^{1}$ We have studied NMR spectra of various ligands which coordinate to the paramagnetic polyoxometalates containing $\mathrm{Co}^{2}, \mathrm{Ni}^{2}, \mathrm{Cu}^{21}$. etc. ${ }^{--6}$ Pyridine ${ }^{2}$. imidazole 3. piperidine ${ }^{5}$, and aziridine ${ }^{6}$ coordinate readily to $\mathrm{SiW}_{11} \mathrm{Co}$ in $\mathrm{D}_{2} \mathrm{O}$. whereas acyclic amines do not. But we have found that acyclic amines bind to $\mathrm{SiW}_{11} \mathrm{Co}$ in dimethysulfoxide (DMSO) or dimethy formanide (DMF).

Only a few studies on acyclic amines coordinated to paramagnetic transition metal ions have been reported so far. ${ }^{1} \mathrm{H}$ NMR spectra of $\left[\mathrm{Ni}(\mathrm{bz})_{\mathrm{e}}\right]^{-1}(\mathrm{bz}=$ benzylamine $)$ and ethylamine coordinated to bis(acety lacetonato)nickel(II) were reported ${ }^{7.8}$ Since these complexes exchange rapidly with free ligands. only a single averaged peak for each proton was observed. We have observed separate complexed and free ligand resonances for amines coordinated to $\mathrm{SiW}_{11} \mathrm{Co}$. We have also measured ${ }^{1} \mathrm{H}$ NMR spectra of some amines coordinated to 11-tungstonickelo(II)silicate anion ($\mathrm{SiW}_{11} \mathrm{Ni}$) in order to separate the isotropic shifts of the SiW $\mathrm{S}_{11} \mathrm{Co}$ complexes into contact and pseudocontact contributions. The pscudocontact shifts provide geometrical information about the conformations of the ligands. In addition, the NMR data on amines are useful in interpreting the NMR data of amino acids coordinated to $\left[\mathrm{SiW}_{3} \mathrm{Cu}_{3} \mathrm{O}_{37}\right]^{10-}$. This work will be published elsewhere."

Experimental Section

Materials. All amines were used as supplied from Aldrich. Methylamine and ethylamine were supplied as concentrated aqucous solutions. The syntheses of $\mathrm{K}_{6}\left[\mathrm{SiW}_{11} \mathrm{Co}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{O}_{39}\right] \cdot{ }_{n} \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{K}_{6}\left[\mathrm{SiW}_{11} \mathrm{Ni}_{(}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{O}_{39}\right] \cdot \mathrm{nH}_{2} \mathrm{O}$ were described before. ${ }^{\text {10 }}{ }^{[1]}$ DMSO-d ${ }_{6}$ or DMF-d d_{7} solutions were
prepared $\sim 0.01 \mathrm{M}$ in each of a ligand and a polyoxometalate.
Physical Measurements. 'H NMR spectra were obtained with a Varian Unity-INOVA 500 spectrometer at ambient temperatures ($22-25^{\circ} \mathrm{C}$). Tetramethylsilane (TMS) was used as an internal reference.

Results and Discussion

SiW ${ }_{11}$ Co Complexes. 'H NMR spectra of several amines coordinated to $\mathrm{SiW}_{11} \mathrm{Co}$ in DMSO_{6} are shown in Figure 1. For these complexes the ligand exchange is slow on the NMR time scale and the pure signals of the free ligand and the complex appear separately at room temperature. The NMR spectrum of a DMSO- d_{6} solution containing $\mathrm{SiW}_{11} \mathrm{Co}$ and methylamine exhibits two peaks at 288.2 and 90.4 ppm from the complex along with the free ligand peaks (Figure 1a). The peak at 288.2 ppm disappears when a small amount of $\mathrm{D}_{2} \mathrm{O}$ is added to the solution. indicating that the proton responsible for this peak is readily exchanged by deuteron. Therefore this peak is attributed to the NH_{2} group and the other peak to the CH_{3} group.

The ${ }^{\mathrm{l}} \mathrm{H}$ NMR spectrum of ethylamine coordinated to SiW ${ }_{11}$ Co consists of three peaks (Figure Ib). The broad peak at 291.9 ppm is assigned to the NH_{2} group. The peaks at 47.3 and -7.1 ppm are assigned to the CH_{2} and CH_{3} groups. respectively. based on their relative intensities.

NMR signals of coordinated propy lamine. N-methylethylaminc. N -methylpropylaminc. and N -methylisopropylamine were assigned similarly: Propylamine. NH_{2} 289.4. $\alpha-\mathrm{CH}_{2}$ 25.0. $\beta-\mathrm{CH}_{2}-20.0 . \mathrm{CH}_{3}-12.5 \mathrm{ppm}: \mathrm{N}$-methy lethylaminc. NH 251.3 . $\mathrm{N}-\mathrm{CH}_{3} 69.1$. $\mathrm{N}-\mathrm{CH}_{2} 39.3$ and $30.8: \mathrm{N}-\mathrm{C}_{-}-\mathrm{CH}_{3}-$ $24.0 \mathrm{ppm}: \mathrm{N}-\mathrm{methyl}$ lpropylamine. $\mathrm{N}-\mathrm{CH}_{3} 74.7 . \mathrm{N}-\mathrm{CH}_{2} 24.6$ and 14.1: $\mathrm{N}-\mathrm{C}-\mathrm{CH}_{2}-32.4$ and -34.3 : $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{CH}_{3}-12.1 \mathrm{ppm}$: N -methylisopropylamine. $\mathrm{NH} 250 . \mathrm{I} . \mathrm{N}_{\mathrm{C}} \mathrm{CH}_{3} 7 \mathrm{l}$. $1 . \mathrm{N}-\mathrm{CH}$ 67.I: N-C-CH; -33.9 and -38.3 ppm . Chemical shifts for some other amines coordinated to $\mathrm{SiW}_{11} \mathrm{Co}$ (not shown in Figure 1) are as follows: Isopropylaminc. $\mathrm{NH}_{2} 299.2 \mathrm{CH}$

Figure 1. 'II NMR spectra of DMSO-d d_{6} solutions containing $\left[\mathrm{SiW}_{11} \mathrm{CoO}_{36}\right]^{[-}$and (a) methylamine. (b) ethylamine. (c) propylamine, (d) V -methylethylamine. (e) N-methylpropylamine, and (i) . V -methylisopropylamine.
30.7. $\mathrm{CH}_{3}-19.3 \mathrm{ppm}$; butylamine, NH_{2} 292.8, $\alpha-\mathrm{CH}_{2} 20.9$, $\beta-\mathrm{CH}_{2}-19.3, \gamma \mathrm{CH}_{2}-13.5, \mathrm{CH}_{3}-5.2 \mathrm{ppm}$. The peaks are shifted upfield until the number of chemical bonds between N and H increases to three, the ranges of chemical shifts being $\mathrm{N}-\mathrm{H} 300-250, \mathrm{~N}-\mathrm{C}-\mathrm{H} 90-14$, $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{H}(-7)-(-39)$ ppm . As the number of bonds increases further, the peaks are shifted downfield in propylamine and butylamine.
$\mathbf{S i W}_{11} \mathbf{N i}$ Complexes. The 'H NMR spectra of the $\mathrm{SiW}_{11} \mathrm{Ni}$ complexes also exhibit separate peaks for the coordinated and free ligands. However, their NMR peaks are broader than those of the $\mathrm{SiW}_{11} \mathrm{Co}$ complexes, and the signals from the NH_{2} groups are too broad to be observed. The ${ }^{1} H$ NMR spectrum of a DMSO-d ${ }_{6}$ solution containing $\mathrm{SiW}_{11} \mathrm{Ni}$ and methylamine or ethylamine is shown in Figure 2. The CII; peak for methylamine appears at 129.1 ppm , and the peaks for the CH_{2} and Cl_{3} groups in the ethylamine at 89.3 and 16.9 ppm, respectively. All peaks are shifted downlield from the corresponding peaks of the $\mathrm{SiW}_{11} \mathrm{Co}$ complexes.

Contact and Pseudocontact Shifts. The isotropic NMR shilit in paramagnetic systems, $\delta_{\text {so }}$, may be delined as the difference in the chemical shifts of the complex and the free ligand.

$$
\delta_{\mathrm{s} \nu}=\delta(\text { complex })-\delta(\text { free ligand })
$$

The isotropic shifts contain contact and pseudocontact contributions.

$$
\delta_{\mathrm{sso}}=\delta_{\mathrm{cos}}+\delta_{\mathrm{dip}}
$$

Contact shilis, $\delta_{\text {eon }}$, occur when unpaired electron density is transferred from the metal to the ligand nucleus in question, whereas pscudocontact shilis, $\delta_{\text {dip }}$ arise from a through-space dipolar interaction between the electronic and nuclear magnetic moments.

Figure 2. ${ }^{1} \mathrm{H}$ NMR spectra of IMMSO- d_{n} solutions containing $\left|\mathrm{SiW}_{11}, \mathrm{ViO}_{s y}\right|^{(-)}$and (a) methylamine and (b) ethylamine.

First we consider the nickel complexes. It has been shown that the pseudocontact contribution to isotropic shifts is small for octahedral nickel complexes. ${ }^{12-14}$ The contact shifts occur from the transmission of π - and σ-type electrons. The Ni^{2+} ion in octahedral symmetry has two unpaired electrons in e_{g} orbitals that have σ symmetry. The contact interaction resulting from σ-electron delocalization is expected to cause a downfield shift of the NMR peak, and the shift will decrease as the number of chemical bonds between N and H increases. Shifts of all peaks are consistent with σ-electron delocalization. Although our complexes deviate considerably from octahedral symmetry, we may assume any pseudocontact shifts to be very small and neglect them.

The isotropic shifts for the cobalt complexes contain large pseudocontact shifts in addition to the contact shifts. The cobalt(II) ion in an octahedral complex has two unpaired electrons in e_{ξ} orbitals and one in a $t_{2 g}$ orbital. Since there is no π bonding between the ligand and the metal in the SiW ${ }_{11}$ Co complexes, the unpaired electron in the $t_{2 \underline{2}}$ orbital may not be transmitted directly to the ligand. Jorrocks has developed a semiquantitative method to separate the contact and pseudocontact shifts based on the assumption that the contact shifts of protons in a cobalt(II) complex are proportional to the corresponding isotropic shifts for a similar nickel complex, i.e., $\delta_{\mathrm{con}}(\mathrm{Co})-k \delta_{\text {to }}(\mathrm{Ni}) .{ }^{15}$ The proportionality constants, k, are 0.85 and 1.07 for quinuclidine and pyridine coordinated to $\mathrm{SiW}_{11} \mathrm{Co}$ and $\mathrm{SiW}_{11} \mathrm{Ni}$ in DMSO- d_{0}, respectively. ${ }^{16}$

Horrocks' method has been used mainly for rigid ligands. But it may also be applied to conformationally flexible amines coordinated to $\mathrm{SiW}_{11} \mathrm{Co}$ and $\mathrm{SiW}_{11} \mathrm{Ni}$, for the conformers of the 1wo complexes should have similar energies. The isotropic shilts for ClI_{2} and Cl_{3} groups in ethylamine coordinated to $\mathrm{SiW}_{11} \mathrm{Ni}$ are 86.7 and 15.8 ppm at room temperature, respectively. Let us assume that the contact shilts in the $\mathrm{SiW}_{11} \mathrm{Co}$ complex are the same as the corresponding isotropic shifts in the $\mathrm{Si}_{11} \mathrm{Ni}$ complex. Then the pscudo-
contact shifts of the CH_{2} and CH_{3} groups are -42.0 and -24.1 ppm , respectively. The relative pseudocontact shifts of the CH_{2} and CH_{3} groups can be calculated from the following staggered conformers.

I

II

III

The anti conformer l is more stable than the ganthe conformers II and III by $\Delta \varepsilon$. The pseudocontact shifts for the protons in the trans and gauche positions of the cobalt atom are designated by δ_{t} and δ_{t}, respectively. Then the popula-tion-weighted average pseudocontact shift for a proton in the CH_{2} group is given by

$$
\begin{aligned}
\delta_{\mathrm{dip}}\left(\mathrm{CH}_{2}\right) & =\mathrm{P}_{1} \delta_{\mathrm{x}}-\mathrm{P}_{2} \delta_{\mathrm{y}}+\mathrm{P}_{2} \delta_{t} \\
& =0.5\left(\delta_{\mathrm{y}}+\delta_{i}\right)-0.5\left(\delta_{g}-\delta_{t}\right) \mathrm{q}
\end{aligned}
$$

Here P_{1} and P_{2} are relative populations with $P_{1} \mid 2 P_{2}-1$, and $q-1 \mid 2 \exp (-\Delta \varepsilon k \mathrm{kT})$. If the ligand is rotating rapidly around the $\mathrm{Co}-\mathrm{N}$ bond, the pseudocontact shift is proportional to the geometric factor, $\left(3 \cos ^{2} \theta-1\right) r^{3}$. We calculated the geometric factors using the following bond lengths and angles: C-C 1.54, C-II 1.08, C-N 1.47. Co-N $2.187 \AA^{17}$ and all angles 109.5°. The calculated geometric factors for the trans and gauche protons are 0.02554 and $0.02151 \wedge^{3}$, respectively.

When the average pscudocontact shifts for the trans and gauche $\mathrm{CH} 1_{\text {: g }}$ groups are represented by δ_{i}, and $\delta_{2}{ }^{\prime}$, respectively, the average pscudocontact shift for a proton in Cl_{3} is given by

$$
\begin{aligned}
\delta_{\mathrm{dip}}\left(\mathrm{CH}_{3}\right) & =\mathrm{P}_{1} \delta_{t}^{\prime}+2 \mathrm{P}_{2} \delta_{j^{\prime}}^{\prime} \\
& =\delta_{k^{\prime}}^{\prime}+\left(\delta_{i}^{\prime}-\delta_{k^{\prime}}^{\prime}\right) / \mathrm{q}
\end{aligned}
$$

The average geometric factors for the protons in the trans and gauche CII_{3} groups are 0.01446 and $-0.005322 \lambda^{3}$. respectively. Now the ratio $\delta_{\text {dip }}\left(\mathrm{CH}_{2}\right) / \delta_{\text {dip }}\left(\mathrm{Cl}_{3}\right)$ is a function of $\Delta \varepsilon$: The measured ratio $\delta_{\text {dip }}\left(\mathrm{Cl}_{2}\right) / \delta_{\mathrm{tip}}\left(\mathrm{ClI}_{3}\right)-1.75$ is obtained when $\Delta \varepsilon$ is $590 \mathrm{~cm}{ }^{1} .^{18}$ This value is of the same order as the energy of the gauche form of butane, $280 \mathrm{~cm}^{1}$ or $3.4 \mathrm{~kJ} \mathrm{~mol}{ }^{1}$. ${ }^{19}$

Diastereotopic Groups. The signal originating from the CH_{2} group in N -methylethylamine coordinated to $\mathrm{SiW}_{11} \mathrm{Co}$ is separated into two peaks (Figure 1d). The temperature dependence of these peaks is shown in Figure 3. Although the two diastereotopic protons may have diflerent chemical shilts, the separation is much larger than those observed for diamagnetic molecules. As the temperature is raised, the two peaks approach each other, merging at $40^{\circ} \mathrm{C}$.

Again the observed isotropic shifts may be interpreted in terms of the following staggered confomers. Conformer I is assumed to be the most stable conformer, for the $\mathrm{Co}-\mathrm{N}$ bond

Figure 3. ']emperature dependence of the 'II N. AR spectrum of N-methylethylamine coordinated to $\left|\mathrm{SiW}_{11} \mathrm{CoO}_{3 \times 1}\right|^{3}$ in DMF-d. The peak for the VH_{2} group is not showti.
is much longer than the N-C: bond ($2.187 \mathrm{vs} .1 .47 \AA$). ${ }^{17}$ In addition, choice of Conformer II as the most stable conformer produces unreasonable results. Energies of Conformers [I and II] are represented by $\Delta \varepsilon_{2}$ and $\Delta \varepsilon_{3}$, respectively. The isotropic shifts of the protons in the trans and gauche positions with respect to the cobalt atom are represented by $\delta_{\mathrm{sco}}(t)$ and $\delta_{\mathrm{tov}}(\mathrm{g})$, respectively.

I

II

III

Now the observed isotropic shifts δ_{1} and δ_{2} may be expressed in terms of $\delta_{\mathrm{w} w}(t)$ and $\delta_{\mathrm{ss})}(g)$.

$$
\begin{aligned}
& \delta_{1}=\mathrm{P}_{1} \delta_{\mathrm{so}}(f)+\mathrm{P}_{2} \delta_{\mathrm{soc}}(g)+\mathrm{P}_{\mathrm{S}} \delta_{\mathrm{tso}}(g) \\
& =\delta_{\mathrm{sov}}(g)+\mathrm{P}_{1}\left\{\delta_{\mathrm{sso}}(t)-\delta_{\mathrm{soc}}(g)\right\} \\
& \delta_{2}=\mathrm{P}_{1} \delta_{\mathrm{ss}}(g)-\mathrm{P}_{2} \delta_{\mathrm{sso}}(g)+\mathrm{P}_{3} \delta_{\mathrm{sov}}(t) \\
& =\delta_{\mathrm{ss}}(g)+P_{\mathrm{S}}\left\{\delta_{\mathrm{soc}}(l)-\delta_{\mathrm{sso}}(g)\right\}
\end{aligned}
$$

At low temperatures where $\mathrm{P}_{1} \simeq 1, \delta_{1}$ and δ_{2} will be close to $\delta_{\text {sso }}(t)$ and $\delta_{\text {sod }}(g)$, respectively. It was shown that the contact shift for the trans proton is much larger than that of the gauche proton. ${ }^{*}$ Since the pseudocontact shifts for these protons are comparable (see above), the low-field peak must be designated as δ_{1}. Since temperature dependence of the isotropic shifts for the cobalt complex is difficult to determine. ${ }^{21}$ we have not attempted to calculate δ_{1} and δ_{2}. Instead, we may estimate $\delta_{s w}(g)$ and $\delta_{s o v}(t)$ from the measured values of δ_{1} and δ_{2} using the following expressions.

Figure 4. Istimated temperature dependence of $\delta_{\mathrm{s}, \mathrm{t}}(g)$ and $\delta_{\mathrm{s},(}(t)$ for the CH_{3} group in N-methylethylamine coordinated to $\left[\mathrm{SiW}_{11} \mathrm{COO}_{34}\right]^{5-}$ in DMF-d ${ }_{7}$

$$
\begin{aligned}
\delta_{\mathrm{isu}}(g) & =\frac{P_{1} \delta_{2}-P_{3} \delta_{1}}{P_{1}-P_{3}} \\
\delta_{\mathrm{isp}}(t) & -\frac{\delta_{1}-\delta_{2}}{P_{1}-P_{3}}+\delta_{\mathrm{isis}}(g)
\end{aligned}
$$

The gauche conformer of butane is more stable than the anti conformer by 280 cm '. Assuming that there is some repulsive interaction between the CI_{3} group and the polyoxometalate in Conformer I, we estimate that $\Delta \varepsilon_{2}$ is about 200 cm^{\prime} '. Energy of Conformer 11 should be similar to that of the gauche conformer of butane. Thus, using $\Delta \varepsilon_{2}-200$ and $\Delta \varepsilon_{3}-300 \mathrm{~cm}^{1}$. we have calculated $\delta_{\mathrm{som}}(g)$ and $\delta_{\mathrm{is}}(t)$ as a function of temperature. The result is shown in Figure 4.

The isotropic shifts contain contact and pseudocontact contributions. Contact shifts are positive and are proportional to $1 / \mathrm{T} .{ }^{22}$ Therefore, the contact contribution decreases with increasing temperature. The isotropic shift for the $\mathrm{N}-\mathrm{C}$ CH_{3} is negative, indicating that the pseudocontact contribution is negative. Since the geometric factors for $\mathrm{N}-\mathrm{Cl}$ s, and the trans and gauche protons in the $\mathrm{N}-\mathrm{Cl}_{2}$ group have the same sign as that of $\mathrm{N}-\mathrm{C}-\mathrm{Cl}_{3}$, the pseudocontact shifts for all protons must be negative. Although it is not possible to express the temperature dependence of the pseudocontact shilts in a simple analytic form for the cobalt complexes. ${ }^{21}$ they should increase with increasing temperature as lor the $\mathrm{N}-\mathrm{C}-\mathrm{Cl}_{3}$ group. Therefore, the isotropic shilts can either increase or decrease with increasing temperature depending upon which component dominates. $\delta_{\text {soo }}(t)$ decreases with increasing temperature, indicating that the contact shitt is dominant. On the other hand, $\delta_{\text {so }}(g)$ increases with increasing temperature, indicating that the pseudocontact shift is dominant.

Two diastercotopic protons in the $\mathrm{N}-\mathrm{CH}_{2}$ group in N methylpropylamine and two diastereotopic Cl_{3} groups in N -methylisopropylamine also have different chemical shifts (Figures $1 \mathrm{e}-\mathrm{f}$). One interesting observation is that two pro-
tons of the $\beta-\mathrm{CH}_{2}$ group in N -methylpropylamine, which are not diastereotopic, have slightly different chemical shifts. The reason for this separation is not clearly understood.
To summarize, we have observed 'H NMR spectra of various acyclic amines coordinated to $\mathrm{SiW}_{11} \mathrm{Co}$ in DMSO- d_{6} or DMF- d_{7}. The isotropic shifts for some protons can be interpreted as population-weighted averages for the staggered conformers. The diasteretopic groups in amines coordinated to $\mathrm{SiW}_{11} \mathrm{Co}$ have very different chemical shifts because they occupy trans and gauche positions in the most stable conformers. More work is needed to extract quantitative information about the conformers from the NMR data.

Acknowledgment. Financial support from the Korean Ministry of Education (BSR1-97-3411) is gratefully acknowledged.

References

1. Pope, M. T.; Müller, A. Angew Chem., Int. Ed. Engl. 1991, 30, 34.
2. Ko, M.; Rhyu, G. I.; So, H. Bull. Korean Chem. Soc. 1993. H, 500 .
3. Ko, M.; Rhyu, G. I.: So, H. Bull. Korean Chem. Soc. 1994. 15.673.
4. Woo. H. Y.; So, H.: Pope, M. T. J. Am. Chem. Soc. 1996, 1/8,621.
5. Hyun, J.; So, H. Bull. Korean Chem. Soc. 1997, 18, 961.
6. Park, S. M.; So, II. Bull. Korean Chem. Soc. 1997, 18, 1002.
7. Jitzgerald, R. J.; Drago, R. S. J. Am. Chem. Soc. 1967. 89, 2879.
8. Quaegerbeur, J. P.: Chachaty, C.; Yasukawa, T. Mol. Phes. 1979, 37, 409.
9. Kim, B. A.; So, H.; Pope, M. T. to be submitted.
10. Simmons, V. E. Ph.D. Thesis; Boston University: 1963.
11. Weakley. T. J. R.; Malik, S. A. J. Inorg. Nucl. Chem. 1967, 29. 2935.
12. Happe, J. A.: Ward, R. L. J. Chem. Phys. 1963, 39. 1211.
13. Doddrell, D.; Roberts, J. D. J. Am. Chem. Soc. 1970, 92, 6839.
14. Morishima, I.: Yonezawa, T.: Goto, K. J. Am. Chem. Soc. 1970, 92, 6651.
15. Horrocks, W. DeW. Jr. Inorg. Chem. 1970, 9, 690.
16. Hyun, J.; Park, S. M.; So, H. Bull. Korean Chem. Soc. 1997, 18, 1090.
17. Elder, R. C. /norg. Chem. 1968, 7, 1117.
18. The calculated $\Delta \varepsilon$ value depends on the choice of the proportionality constant k. We get $\Delta \varepsilon-465 \mathrm{~cm}^{-1}$ for $k-1.10$ and $\Delta \varepsilon=1590 \mathrm{~cm}^{-1}$ for $k=0.90$.
19. Wiberg, K. B.: Murcko, M. A. J. Am. Chem. Soc: 1988, 110, 8029.
20. Morishima, 1.; Okada, K.; Ohashi, M.; Yonczawa, T. Chem. Commun. 1971, 33.
21. Kahn, O. Moleculor Magnetism; VCH: New York, 1993; p 38. The pseudocontact shift is proportional to the magnetic anisotropy.
22. McConnell, H. M.: Chesnut, D. B. J. Chem. Phys. 1958. 28. 107.
