Reaction of $\mathrm{Ru}(\mathrm{tpy}) \mathrm{Cl}_{3}$ with N, N, C-Terdentates, 3,2'-Annulated-6-(2"-pyridyl)-2-phenylpyridines

Yurngdong Jahng* and Jac Gyu Park
College of Pharmacy, Yeungnam University; Kyongsan 712-749, Korea Received Jannary 11, 1999

Abstract

The reactions of $\mathrm{Ru}(\operatorname{tpy}) \mathrm{Cl}_{3}$ ($\mathrm{tpy}=2,2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine) with new $N, N, \mathrm{C}^{\prime}$-terdentate ligands, 3, 2^{\prime}-annulated- 6 ($2^{\prime \prime}$-pyridyl)-2-phenylpyridines (1, HI.) and the properties of their $\mathrm{Ru}(11)$ complexes are described. The distribution ratio of the two possible Ru(II) complexes, a pentaaza-coordinated complex $\left\lceil\mathrm{Ru}(\mathrm{tpy})\left(1-\mathrm{N}, \mathrm{N}^{\prime}\right) \mathrm{CI}\right\rceil^{-}$and a cycloruthenated complex $\left[\mathrm{Ru}(\mathrm{tpy})\left(\mathrm{L}, \mathrm{a}-N_{, ~ N}, \mathrm{~N}^{\prime}\right)\right]^{-}$are highly dependent on the length of the polymethylene unit. The trimethylene bridge of the N, N, C-terdentate in pentada-coordinated complex is rigid enough to induce an asymmetry in the complex.

Introduction

Cycloruthenated complexes of bidentate ligands such as 2phenylpyridine and benzo $[h]$ quinoline, presenting N, C donor atoms to a metal center are extensively studied.' The interests of these compounds stem from the possible usage for photochemical and photophysical properties. ${ }^{2}$ and also models for the development of synthetic methodology for the preparation of specific cyclometallated complexes." The N, N, C-terdentate, 6-(2'-pyridyl)-2-phenylpyridine (1a, HLa) was introduced as a higher homology of the series. Additionally, cycloplatinated complexes of $\mathbf{1 a}$ added intriguing properties including base-selective DNA cleavage activity. ${ }^{4}$ which can be a useful probe to understand nucleic acids.

As far as the coordination chemistry is concerned, the reaction of 1a with RuCl_{3} did not form either bis-cycloruthenated $\left[\mathrm{Ru}\left(\mathrm{La}-N, N^{\prime}, C^{*}\right)_{2}\right]$ or tris-complex $\left[\mathrm{Ru}(\mathbf{1 a}-N, N)_{3}\right]^{2-}$. but instead afforded only a tetraazacoordinated complex $\left[\mathrm{Ru}\left(\mathbf{1 a}-\mathrm{N}, \mathrm{N}^{\prime}\right)_{2} \mathrm{Cl}_{2}\right] .{ }^{5}$ On the other hand, the reaction of $\mathbf{1 a}$ with $\mathrm{Ru}(t p y) \mathrm{Cl}$: afforded a non-cycloruthenated complex $\left[\mathrm{Ru}(\mathrm{tpy})\left(\mathbf{1 a - N}-N^{\prime}\right) \mathrm{Cl}\right]$ in which la acts as a $N N$-bidentate and a cycloruthenated complex [Ru(tpy)(La-N,N,C)] in which 1a as a NN.C-terdentate. ${ }^{6}$ Formation of these two complexes could be explained by a stepwise coordination of a distal nitrogen, followed by a central nitrogen of the second ligand. There are two possible modes of attack for distal nitrogen of 1 onto the metal center of $\mathrm{Ru}(\mathrm{tpy}) \mathrm{Cl}$ s to result in two isomeric pentaaza-coordinated complexes 2 and 3 (Scheme 1), of which the intermediate $\mathbf{3}$ can only undergo cycloruthenation to 4 .

Related studies on the formation of ruthenium complexes by unsymmetrical $N N N$-terdentates revealed that an equatorial attack favors to form a pentaaza-coordinated $\mathrm{Ru}(\mathrm{IL})$ complex $\left[\mathrm{Ru}\left(\mathrm{L}-N, N^{\prime} N^{\prime \prime}\right)\left(\mathrm{L}-N N^{\prime}\right) \mathrm{Cl}\right]^{\prime}$ when the additional stabilizing force, such as π-stacking is strong enough to prevent the complex from a backside displacement toward a hexaaza-coordinated complex $\left[\operatorname{Ru}\left(\mathrm{L}-N_{,} N^{\prime}, V^{\prime \prime}\right)_{2}\right]^{2 .}$. The introduction of steric restriction on the unsymmetrical N, N, N terdentate, however, forced the distal nitrogen to push out chloride from the metal core to adopt $\left[\mathrm{Ru}\left(\mathrm{L}-\mathrm{N}_{-} \mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}\right)_{2}\right]^{2 \cdot}$ in

Scheme I. Reaction mode of NA. ${ }^{-2}$-erdentate with Ru(py$\left.) \mathrm{C}\right]_{3}$.
the presence of room light. ${ }^{3}$ Although studies on cyclometallation have long been pursued, the conformational effect of the ligands was examined only in the limited cases. ${ }^{1.8}$ We herein describe the reaction pattern and the steric effect of the N, N, C-terdentate ligands 1 , in which the N, C - bite-angles were controlled by annulating bridge at 3,2 '-position, upon the reaction with $\mathrm{Ru}(\mathrm{tpy}) \mathrm{Cl}_{3}$.

Experimental Section

Melting points were determined using a Fischer-Jones melting points apparatus and are not corrected. Infrared (IR) spectra were obtained using a Perkin-Elmer 1330 spectrophotometer. Nuclear magnetic resonance (NMR) spectra were obtained using a Bruker-250 spectrometer 250 or 300 MHz for ${ }^{1} \mathrm{H}$ NMR and are reported as parts per million (ppm) from the internal standard tetramethylsilane (TMS). Chemicals and solvents were commercial reagents grade and used without further purification. Elemental analyses were take on a Hewlett-Packard Model 185B elemental analyzer. The starting materials $\mathbf{1 b}, \mathbf{1 c}, \mathbf{1 d}, \mathbf{1} \mathrm{e}^{8 c} \mathrm{I}$-aminonaphthalene-

2 -carbaldehyde (6) ${ }^{5}$ and $\mathrm{Ru}(\mathrm{tpy}) \mathrm{Cl}_{3}{ }^{16}$ were prepared by either presiously reported method or modification of such a method.

2-(2'-Pyridyl)benzo h]quinoline (1f). A mixture of 121 mg (1.0 mmol) of 2 -accty lpyridine (5). 171 mg (1.0 mmol) of 1 -aminonaphthalene-2-carbaldehyde (6) and 0.25 mL of saturated ethanolic KOH in 10 mL of absolute EtOH was refluxed for 8 h . The reaction misture was poured into 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water. followed by brine. The organic layer was dried over anhydrous MgSO_{+}. Evaporation of the solvent afforded pale yellow solid. which was chromatographed on alumina. cluting with $\mathrm{CH}_{3} \mathrm{Cl}_{2}$: hexane (7:3). The early fractions afforded $236 \mathrm{mg}(95 \%)$ of $\mathbf{1 f}$ as white platelets. mp 101-102 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \not 2 . \mathrm{CDCl}_{3}$) $\delta 9.48(\mathrm{dd} . J=7.8 .1 .5 \mathrm{H} \not \approx \mathrm{Hl} 0) .8 .89\left(\mathrm{~d} . J=7.8 \mathrm{H} \not . \mathrm{H}^{\prime}\right)$). $8.76\left(\mathrm{dd} . J=4.5 .1 .5 \mathrm{H} \not \approx . \mathrm{H} 6{ }^{\prime}\right) .8 .70(\mathrm{~d} . J=8.4 \mathrm{H} \not . \mathrm{H} 3) .8 .29$ $(\mathrm{d} . J=8.4 \mathrm{H} \not \ldots \mathrm{H} 4) .7 .93\left(\mathrm{dd} . J=7.8 .1 .5 \mathrm{H} \not . \mathrm{H}+{ }^{\prime}\right) .7 .92(\mathrm{~d} . J$ $=7.8 \mathrm{H} \ldots \mathrm{H} 5 / \mathrm{H} 6) .7 .80(\mathrm{t} . J=8.4 \mathrm{H} \not . \mathrm{H} 8) .7 .75-7.68(\mathrm{~m}$. $3 \mathrm{H} . \mathrm{H} 3 . \mathrm{H} 6 / \mathrm{H} 5$, and H 9). 7.39 (ddd. $J=8.4 .6 .0 .1 .0 \mathrm{H} \not \approx$. H^{\prime}). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}: \mathrm{C} .84 .35: \mathrm{H} .4 .72: \mathrm{N}$. 10.93. Found C. 84.38: H. 4.71: N. 10.91.
$\left[R u(t p y)\left(L c-N, N^{\prime}, C\right)\right]\left(P_{6}\right)(4 c)$ and $\left[R u(t p y)\left(1 c-N, N^{\prime}\right)\right.$ $\mathrm{Cl}]\left(\mathrm{PF}_{6}\right)$ (2c). A mixture of $29.0 \mathrm{mg}(0.065 \mathrm{mmol})$ of $\mathrm{Ru}(\mathrm{tpy}) \mathrm{Cl}_{3}$ and $16.0 \mathrm{mg}(0.065 \mathrm{mmol})$ of 1 c in 10 mL of HOAc was refluxed with 3 drops of N-cthylmorpholine for 2 h. The solvent was removed under reduced pressure. and the residue was dissolved in McOH . The solution was filtered to remove any traces of unreacted $\mathrm{Ru}(\mathrm{tpy}) \mathrm{Cl}_{3}$. and the liltrate treated with excess $\mathrm{NH}_{4} \mathrm{PF}_{6}$ to yicld 45.0 mg (94%) ol dark purple solid which was chromatographed on alumina cluting with toluene : $\mathrm{CH}_{2} \mathrm{CN}(1 ; 1)$. The carly fractions alforded 20.0 mg of pink crystals as a $\left[\mathrm{Ru}(\mathrm{pyy})\left(\mathrm{Lc}-N . N^{\prime} . \mathrm{C}\right)\right]\left(\mathrm{PF}_{6}\right)$ after crystallization from the cluent. 'H NMR ($\mathrm{CD}_{3} \mathrm{CN} .500$ $\mathrm{MH} \nsim$) $\delta 8.57$ (d. $2 \mathrm{H} . J=8.0 \mathrm{H} \%$). 8.37 (overlapped id. 3 H . $J=8.0 .1 .5 \mathrm{H} \%) .8 .27(\mathrm{~d} .1 \mathrm{H} . J=7.5 \mathrm{H} \%) .8 .0 \mathrm{]}(1.1 \mathrm{H} . J=7.5$ $\mathrm{H} \%$). $7.82-7.76(\mathrm{~m} .4 \mathrm{H}) .7 .74(\mathrm{td} .2 \mathrm{H} . J=7.5 .0 .8 \mathrm{H} \%) .7 .48-$ 7.43 (m. 3H). $7.08-7.05(\mathrm{~m} .2 \mathrm{H}) .6 .43\left(\mathrm{~d} . J=7.7 \mathrm{H} \not \approx . \mathrm{H} 3^{\prime}\right.$ ol 1c). $6.39\left(\mathrm{t} . J=7.7 \mathrm{H} \approx . \mathrm{H} 4^{\prime}\right.$ of 1 c$) .5 .46(\mathrm{dd} . \mathrm{IH} . J=7.7 .1 .4$ $\mathrm{H} / . \mathrm{H}^{\prime}$ of 1 c). 3.26 (1. $2 \mathrm{H} . J=7.5 \mathrm{H} \%$). $3.04(\mathrm{t} .2 \mathrm{H} . J=7.5$ $\mathrm{H} \%$). Anal. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{RuPF}_{6}$: C. $53.8 \mathrm{I}: \mathrm{H}, 3.28$: N . 9.51. Found C. 53.80 : H. 3.30: N. 9.50. The later fractions afforded 24.5 mg of purple crystals as $[\mathrm{Ru}(\mathrm{II})(\mathrm{tpy})(1 \mathrm{c}-$ $N . N) \mathrm{Cl}\left(\mathrm{PF}_{6}\right)$ after erystallization from the cluent. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN} .300 \mathrm{MH} \%\right) \delta 10.04$ (ddd. $1 \mathrm{H} . J=5.7 .2 .4 .0 .8 \mathrm{H} /$ $\mathrm{H} 6^{\prime \prime}$ of 1 c). 8.54 (dd. $1 \mathrm{H} . J=7.5 .1 .0 \mathrm{H} \neq \mathrm{H} 3^{\prime \prime}$ of 1 c). 8.32 (dd. $1 \mathrm{H} . J=7.5 .1 .5 \mathrm{~Hz} . \mathrm{H} 4^{\prime \prime}$ of 1 c). 8.09 (d. $3 \mathrm{H} . . J=8.0 \mathrm{~Hz}$. H5 of 1c. H3' and H3" of (py). 7.97-7.92 (m. 5H). 7.59 (1. 1H. $J=8.0 \mathrm{H} \% \mathrm{H} 4$ of (py). 7.53 (d. IH. $J=7.5 \mathrm{H} \neq \mathrm{H} 4$ of 1c). 7.43 (d. $2 \mathrm{H} . J=4.8 \mathrm{H} \% \mathrm{H} 6^{\prime}$ and $\mathrm{H} 6^{\prime \prime}$ of tpy). $7.27-7.10$) (m. 2H). 7.04 (dd. $1 \mathrm{H} . J=7.4 .1 .0 \mathrm{H} / \mathrm{H} 4^{\prime}$ of 1 c$) .6 .96$ (d. $1 \mathrm{H} . J=6.2 \mathrm{H} \not . \mathrm{H} 3^{\prime}$ of 1 c) .6 .56 (td. $1 \mathrm{H} . J=8.0 .1 .8 \mathrm{H} \not . \mathrm{H}^{\prime}$ of 1 c$) .5 .62\left(\mathrm{dd} .1 \mathrm{H} . J=8.0 .0 .8 \mathrm{~Hz} . \mathrm{H}^{\prime}\right.$ of 1 c$) .2 .14(\mathrm{~s} .4 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{RuClPF}_{6}$: C. 51.27: H. 3.26: N. 9.06. Found C. 51.25 : H. 3.25: N. 9.07.
$\left[\mathrm{Ru}\left(\mathrm{tpy}_{\mathbf{y}}\right)\left(1 \mathrm{~d}-\mathrm{N}, \mathrm{N}^{\prime}\right) \mathrm{Cl}\right]\left(\mathrm{PF}_{6}\right)$ (2d). The same procedure above described was employed with $54.4 \mathrm{mg}(0.2 \mathrm{mmol})$ of $\mathrm{Ru}(\mathrm{tpy}) \mathrm{Cl}_{3}$ and $88.1 \mathrm{mg}(0.2 \mathrm{mmol})$ of $\mathbf{1 d}$ in 10 mL of

HOAc to give $137.0 \mathrm{mg}(87 \%)$ of $\left[\mathrm{Ru}(\mathrm{tpy})\left(1 d-N N^{\prime}\right) \mathrm{Cl}\right] \mathrm{PF}_{6}$. which was chromatographed on alumina. cluting with $\mathrm{CH}_{3} \mathrm{CN}$: toluene ($1: 4$). The recrystallization from the carly fractions afforded dark purple crystals as a desired complex. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN} .500 \mathrm{MH} 九\right) \delta 10.06(\mathrm{ddd} .1 \mathrm{H} . J=4.8 .1 .5$. $0.8 \mathrm{H} \not \approx \mathrm{H} 6^{\prime \prime}$ of 1 d$) .8 .60\left(\mathrm{~d} .1 \mathrm{H} . J=8.2 \mathrm{H} \not . \mathrm{H}^{\prime \prime}\right.$ ol $\left.1 \mathbf{1 d}\right) .8 .29$ (td. $1 \mathrm{H}, J=8.2 .1 .5 \mathrm{H} \not \approx . \mathrm{H} 4^{\prime \prime}$ of 1 d$) .8 .28$ (d. $1 \mathrm{H} . J=8.0 \mathrm{H} \%$. H5 of 1 d$) .8 .22$ (d. 1H. $J=8.1 \mathrm{~Hz} . \mathrm{H} 3^{\prime}$ of tpy). 8.15 (d. $1 \mathrm{H} . J$ $=8.1 \mathrm{H} \not . \mathrm{H} 3^{\prime \prime}$ of tpy). 8.12 (d. $1 \mathrm{H} . J=5.4 \mathrm{H} \not . \mathrm{H} 6^{\prime}$ of $\left.\mathrm{t} p \mathrm{y}\right)$. $8.02(\mathrm{~d} .1 \mathrm{H} . J=8.0 \mathrm{H} / . \mathrm{H} 3 / \mathrm{H} 5$ of $\mathrm{t} y) .7 .97(\mathrm{td} .1 \mathrm{H} . J=7.8$. 1.4 Hz . H^{\prime} of tpy) .7 .88 (ddd. $1 \mathrm{H} . J=8.2 .4 .8 .1 .5 \mathrm{H} \not . . \mathrm{H}^{\prime \prime}$ of 1 d$) .7 .86(\mathrm{~d} .1 \mathrm{H} . J=8.0 \mathrm{H} \neq \mathrm{H} 5 / \mathrm{H} 3$ of tpy$) .7 .81(\mathrm{td} .1 \mathrm{H}$. $J=7.8 .1 .5 \mathrm{H} \not \approx . \mathrm{H}^{\prime \prime}$ ol $\left.\mathrm{l}^{\prime} \mathrm{p} y\right) .7 .62(\mathrm{t} .1 \mathrm{H}, J=8.0 \mathrm{H} \neq . \mathrm{H}+$ of tpy). 7.52 (d. $1 \mathrm{H} . J=8.0 \mathrm{H} / . \mathrm{H} 4$ of 1 d$) .7 .45$ (dd. $1 \mathrm{H} . J=$ $4.8 .1 .5 \mathrm{H} \neq \mathrm{H} 6^{\prime \prime}$ of tpy) .7 .42 (ddd. $1 \mathrm{H} . J=8.0 .+8.1 .5 \mathrm{H} \%$. H^{\prime} of tpy). 7.17 (ddd. $1 \mathrm{H} . J=8.0,4.8 .1 .5 \mathrm{H} \neq \mathrm{H} 5^{\prime \prime}$ of tpy). $7.10(\mathrm{td} . \mathrm{lH} . J=7.4 .1 .0 \mathrm{H} / . \mathrm{H} 4$ ' of 1 d$) .6 .82(\mathrm{~d} .1 \mathrm{H} . J=6.2$ $\mathrm{H} \not . \mathrm{H} 3^{\prime}$ ol 1 d$) .6 .59$ ($\mathrm{td} .1 \mathrm{H} . J=7.4 .1 .0 \mathrm{H} \not \approx . \mathrm{H} 5^{\prime}$ of 1 d$) .5 .+1$ (d. $1 \mathrm{H} . J=7.5 \mathrm{H} \nsim . \mathrm{H} 6^{\prime}$ of 1 d$) .2 .32(\mathrm{dd} .1 \mathrm{H} . J=13.2 .5 .0$ $\mathrm{H} \%$). 2.21 (dd. $1 \mathrm{H} . J=13.4 .6 .7 \mathrm{H} \%$). $1.79-1.64(\mathrm{~mm} .1 \mathrm{H})$. $1.63-1.55(\mathrm{~m} .1 \mathrm{H}) .1 .54-1.44(\mathrm{~m} .1 \mathrm{H}) .1 .16-1.10(\mathrm{~m} .1 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{RuClPF}_{6}$: C. $51.88: \mathrm{H}, 3.46: \mathrm{N}$. 8.90, Found C. 51.90 : H. 3.45 : N. 8.90 .
$\left[\mathbf{R u}(t p y)\left(1 \mathrm{e}-N, N^{\prime}\right) \mathbf{C l}\right]\left(\mathbf{P F}_{6}\right)(\mathbf{2 e})$. The same procedure above described was employed with 29.0 mg (0.065 mmol) of $\mathrm{Ru}(\mathrm{tpy}) \mathrm{Cl}_{3}$ and $18.6 \mathrm{mg}(0.065 \mathrm{mmol})$ of 1 e in 10 mL of HOAc to give $66.0 \mathrm{mg}(83 \%)$ of $\left[\mathrm{Ru}(\mathrm{tpy})\left(1 \mathrm{c}-N . N^{\prime}\right) \mathrm{Cl}^{2}\right] \mathrm{PF}_{6}$. which was chromatographed on alumina. cluting with $\mathrm{CH}_{3} \mathrm{CN}$: toluene ($1: 4$). The recrystallization from the early fractions alforded dark purple erystals which turned out a mixture of two diasteromers. A major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN} .250 \mathrm{MH} \ell\right) \delta 10.06$ (ddd. $1 \mathrm{H} . ~ . ~ J=4.8 .1 .5 .0 .8$ $\mathrm{H} \not \approx . \mathrm{H} 6^{\prime \prime}$ of 1 e). 8.65 (d. $1 \mathrm{H} . J=8.2 \mathrm{H} \neq . \mathrm{H} 3^{\prime \prime}$ of 1 e). 8.38 (d. $1 \mathrm{H} . J=8.3 \mathrm{H} \approx . \mathrm{H} 5$ of 1e) .8 .26 (td. $1 \mathrm{H} . ~ . J=8.2 .1 .8 \mathrm{H} \neq . \mathrm{H} 4^{\prime \prime}$ of 1 c$) .8 .22$ (d. $1 \mathrm{H} . J=8.3 \mathrm{H} \not . \mathrm{H} 3^{\prime}$ of tpy$) .8 .16$ (d. $\mathrm{IH} . J=$ $8.3 \mathrm{~Hz} . \mathrm{H}^{\prime \prime}$ of tpy). 8.07 (dd. $1 \mathrm{H} . ~ J=7.5 .0 .8 \mathrm{H} \neq \mathrm{H} 6^{\prime}$ of tpy). $8.00-7.78$ (m. 5H. H5" of 1c. H3. H5. and H4' and H 4 " of tpy). $7.66(\mathrm{t} .1 \mathrm{H} . J=7.5 \mathrm{H} \angle . \mathrm{H}+$ of tpy). $7.60(\mathrm{~d} .1 \mathrm{H} . J=$ $7.5 \mathrm{~Hz} \angle \mathrm{H} 4$ of 1 e) .7 .48 (ddd. $1 \mathrm{H} . ~ J=4.8 .1 .5 .0 .8 \mathrm{H} \not . \mathrm{H} 6^{\prime \prime}$ of tpy). 7.35 (ddd. IH. $J=7.4 .4 .8 .1 .0 \mathrm{H} \neq \mathrm{H}^{\prime}$ of (py). 7.257.11 (m. $2 \mathrm{H} . \mathrm{H}^{\prime}$ of $1 \mathbf{c}$ and $\mathrm{H}^{\prime \prime}$ " of tpy). 6.78 (d. $\mathrm{IH} . J=6.2$ $\mathrm{H} \not \approx . \mathrm{H} 3^{\prime}$ of 1 e). 6.54 (dd. $1 \mathrm{H} . J=7.4$. $1.0 \mathrm{H} \neq . \mathrm{H}^{\prime \prime}$ of 1 e). 5.34 (dd. $1 \mathrm{H} . J=7.5,1.0 \mathrm{H} \not . \mathrm{H}^{\prime}$ of 1 c). 2.43 (dd. $\mathrm{IH} . J=12.5$. $5.0 \mathrm{~Hz}) .1 .81-1.61(\mathrm{~m} .2 \mathrm{H}) .1 .36-1.26(\mathrm{~m} .1 \mathrm{H}) .1 .10-0.94(\mathrm{~m}$. $2 \mathrm{H}) .0 .92-0.80(\mathrm{~m} .2 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{RuClPF}_{6}$ C. 52.47: H. 3.65: N. 8.74. Found C. 52.50: H. 3.65: N. 8.76.
$\left[\mathbf{R u}(t p y)\left(\mathbf{L f}-N, N^{\prime}, C\right)\right] \mathbf{P F}_{6}(4 \mathbf{f})$. The same procedure described above was employed with 44.1 mg (0.1 mmol) of $\mathrm{Ru}(\mathrm{tpy}) \mathrm{Cl}_{3}$ and 25.6 mg (0.1 mmol) of 1 f in 10 mL of HOAc to yield a purple solid. which was chromatographed on alumina cluting with toluene : $\mathrm{CH}_{3} \mathrm{CN}$ (1 : I). The carly fractions afforded $61.0 \mathrm{mg}(90 \%)$ of purple needles. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \not . \mathrm{CDCl}_{3}$) $\delta 8.64\left(\mathrm{~d} . J=8.4 \mathrm{H} \not \approx \mathrm{H}_{3}\right.$ of tpy$) .8 .62(\mathrm{~d}$. $J=7.8 \mathrm{H} \% \mathrm{H}_{3}$ of 1 f$) .8 .55\left(\mathrm{~d} . J=8.4 \mathrm{H} \neq \mathrm{H}_{3}\right.$ of tpy). $8.50(\mathrm{~d}$. $J=8.4 \mathrm{H} \% . \mathrm{H}_{3}$ of 1 f$) .8 .40\left(\mathrm{~d} . J=8.1 \mathrm{H} \not . \mathrm{H}_{4}\right.$ of 1 f$) .8 .08(\mathrm{t} . J$ $=7.8 \mathrm{H} \% . \mathrm{H}_{4}$ of tpy). 7.89 (AB quartct. H_{5} and H_{6} of 1 f). 7.69 (td. $J=8.0 .1 .2 \mathrm{H} \not . . \mathrm{H}_{4^{\prime}}$ of tpy). $7.59\left(\mathrm{~d} . J=5.4 \mathrm{H} \approx . \mathrm{H}_{6}\right.$ of 1 f$)$,
7.28-7.14 (m, 4H), 7.07 (dd, $J-5.4,1.2 \mathrm{~Hz}, \mathrm{H}_{5^{\prime}}$ of tpy), 6.90 (d. $J-7.2 \mathrm{~Hz}, \mathrm{H}_{7}$ of $\mathbf{1 f}$). $6.86\left(\mathrm{t}, J-7.2 \mathrm{~Hz}, \mathrm{H}_{8}\right.$ of $\mathbf{1 f}$), and 5.98 (d, $J-7.5 \mathrm{~Hz}, \mathrm{H}_{9}$). Anal. Calcd. $\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{RuPF}_{6}: \mathrm{C}$, $53.96 ; \mathrm{H}, 3.02 ; \mathrm{N}, 9.53$. Found C. $53.98 ; \mathrm{H}, 3.03 ; \mathrm{N}, 9.50$.

Results and Discussion

Synthesis and Properties. A new N,N.C-terdentate $\mathbf{1 f}$ was prepared by Friedländer reaction of 2-acetylpyridine (5) and 1-aminonaphthalene-2-carbaldehyde ${ }^{9}$ (6) in 95% yield. ${ }^{1} H$ NMR of $\mathbf{1 f}$ showed characteristic proton resonances for H 10 and H 6 as a doublet of doublet $\left(J_{2,10}-7.8, J_{8.10}-1.8\right.$ $\mathrm{Hz})$ at $\delta 9.45$ and as a doublet of doublet $\left(J_{5,6}-4.8, J_{4,6}\right.$ -1.5 Hz) at $\delta 8.76$, respectively.

The reaction of an appropriate ligand with $\mathrm{Ru}(\mathrm{tpy}) \mathrm{Cl}_{3}$ smoothly yielded two complexes type 2 and 4 which were characterized after anion metastasis with ammonium hexafluorophosphate. Distribution ratios of two complexes are highly dependent on the length of the bridging methylene units of the ligands. The two reaction products, a nonmetallated, pentaaza-coordinated complex $[R u(t p y)(1 c-N$, $\left.\left.N^{\prime}\right) \mathrm{Cl}^{\prime}\right]$ and a cycloruthenated complex $\left[\mathrm{Ru}(\mathrm{tpy})\left(\mathrm{Lc}-\mathrm{N}, N^{\prime}\right.\right.$. ()] , were isolated from the reaction mixture of $1 \mathbf{c}$ in a $3: 2$ ratio. This result is consistent with the previously reported result as in the case of 1a. ${ }^{6}$ The reactions of $1 \mathbf{d}$ and $\mathbf{l e}$, however, gave corresponding pentaaza-coordinated complexes as an only product while the reaction of $\mathbf{1 f}$ gave only a cycloruthenated complex. It may not be surprising that reaction of 1 lb afforded a messy, highly insoluble mixture which does not allow to isolate any of identifiable complex presumably due to unfavorable bite angle."

Although it has been claimed that the solvent system affects the distribution ratio of a non-cyclometallated complex and a cycloruthenated complex, ${ }^{\text {(1) }}$ we did not observe such a significant solvent elfect in aqueous w. nonaqucous solvent systems.

The dimethylene bridge system le can attack $\mathrm{Ru}_{(}(\mathrm{tpy}) \mathrm{Cl}_{3}$ either axial or equatorial lashion to give two complexes 2 and 4 as in the case of non-bridged parent la. On the other hand, the tri- or tetramethylene bridge in the intermediate 3 From 1d and le, develops severe steric congestion around $\mathrm{Ru}(\mathrm{II})$ core thus interfering axial attack. Such a steric eflect may induce dissociation of the ligand from 3 and reattack equatorially to form 2 . The equatorial attack, however, afforded a pentaaza-coordinated complex 2 in which the trimethylene bridge 1 wisted the phenyl ring toward over the central pyridine ring of orthogonal tpy enough to create π stacking between the two aromatic rings. Such a π-stacking not only stabilizes the complex but also creates a chiral axis through $2,1^{1}$-bond of $\mathbf{1 d}$ by losing the flexibility of the trime-
thylene bridge.
In 4 c , cycloruthenation was confirmed by comparing ${ }^{1} \mathrm{H}$ NMR spectrum and elemental analysis with those of $\mathbf{2 a}$. Although 'H NMR spectrum of $\mathbf{4 c}$ is somewhat complex even in 500 MHz , all three protons of the benzene moiety were well resolved enough to be assigned. The H5' resonance of the ligand $\mathbf{1 c}$ in complex $\mathbf{4 c}$ appeared at 5.46 as a doublet of doublet $\left(J_{4: 5}-7.7, J_{5^{\prime} 5^{\prime}}-1.4 \mathrm{~Hz}\right)$ which is comparable to the value ($\delta 5.98$) of $\mathrm{H9}$ in $\mathbf{4 f}$ which are well matched to the literature value ($\delta 5.69$) of corresponding proton in 4a. ${ }^{6}$ Such resonances are highly upfield-shifted ($\Delta \delta 1.10 \mathrm{ppm}$) compared with that of H^{\prime} in complex $\mathbf{2 c}$ due to neighboring $\mathrm{C}-\mathrm{Ru}$ bond. On the other hand, 2 c showed two characteristic proton resonances at $\delta 10.04\left(J_{5^{\prime \prime} .0 "}-5.7\right.$, $J_{4^{\prime \prime} .66^{\prime \prime}}-2.4, J_{3^{\prime \prime} .60^{\prime \prime}}-0.8 \mathrm{~Hz}$) for the $\mathrm{H} 6^{\prime \prime}$ of distal pyridine and at $\delta 5.62\left(J_{s^{\prime \prime}, 6^{\prime \prime}}-8.0, J_{4^{\prime \prime} \cdot 6^{\prime \prime}}-0.8 \mathrm{~Hz}\right)$ for $\mathrm{H} 6^{\prime}$ of the phenyl of 1c. The former orients toward the electronic cloud of chlorine ligand on $\mathrm{Ru}(\mathrm{II})$ core, thus deshielded ($\Delta \delta 1.36 \mathrm{ppm}$), while the latter orients toward the shielding region of the central pyridine of tpy thus shifted upfield ($\Delta \delta 2.25 \mathrm{ppm}$) compared to the corresponding resonances of the free ligand.

The aliphatic region of ${ }^{\prime} \mathrm{H}$ NMR spectrum of $\mathbf{2 d}$ revealed that the bridge is rigid enough to differentiate all the 6 protons showing 2 one-proton doublets of doublet at $\delta 2.32\left({ }^{2} J\right.$ $\left.-13.2,{ }^{3} J-5.0 \mathrm{~Hz}\right)$ and $\delta 2.21\left({ }^{2} J-13.4,{ }^{3} J-6.7 \mathrm{~Hz}\right)$, and 4 well separated one-proton multiplets in the region of $\delta 1.79$ 1.12. Such a rigidity developed a chiral axis through 2,1 'bond to result in non-equivalence of the II protons of the $2,2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine moiety, thus showing 21 aromatic proton resonances which were assigned by the double quantum COSY experiment (Figure 1).

Figure 1. $500 \mathrm{MIIz}{ }^{1} \mathrm{I}$ NMR COSY spectrum of Ruftpy)(1d$\mathrm{NA}) \mathrm{CI}]\left[\mathrm{PF}_{6} \mathrm{~J}\right.$ ($\delta 5.30-8.80 \mathrm{ppm}$). (The peak at $\delta 10.06$ was assigned by a separate decoupling experiment).

Table 1. UV Absorption Spectral Data of Ru(ll) Complexes

Compound	$\lambda_{\text {naxa }}(\varepsilon)\left(\mathrm{CH}_{3} \mathrm{CN}\right)$		
$\left[\mathrm{Ru}(\mathrm{tpy})\left(1 \mathrm{a}-\mathrm{S}_{,} \mathrm{N}^{\prime}\right) \mathrm{Cl}\right]\left(\mathrm{PF}_{6}\right)^{\prime \prime}$	237(33,500)	278(27,100)	$305(38,100)$
	316(sh, 35,900)	$502(10.700)$	
$\left[\mathrm{Ru}(\mathrm{tpy})\left(1 \mathrm{c}-\mathrm{S}_{,} \mathrm{N}^{\prime}\right) \mathrm{Cl}\right]\left(\mathrm{PF}_{6}\right)$	$239(44.200)$	277(39,700)	312(37,000)
	$508(12,700)$		
$\left[\mathrm{Ru}(\mathrm{tpy})\left(1 \mathrm{~d}-\mathrm{S}_{,} \mathbf{S}^{\prime}\right) \mathrm{Cl}^{\prime}\left(\mathrm{PF}_{6}\right)\right.$	234(26,700)	2750 21,900$)$	$315(29,600)$
	$500(7,000)$		
$\left[\mathrm{Ru}(\mathrm{tpy})\left(1 \mathrm{e}-\mathrm{S}_{2} \mathrm{~N}^{\prime}\right) \mathrm{Cl}\right]\left(\mathrm{PF}_{6}\right)$	227(36,800)	272(37,600)	$312(37,000)$
	$508(12,700)$		
$\left.\left[\mathrm{Ru}^{(t p y}\right)\left(\mathrm{La}-\mathrm{V}_{,} \mathrm{N}^{\prime}, \mathrm{C}\right)\right]\left(\mathrm{PF}_{6}\right)^{\prime \prime}$	236652,700)	274(sh, 46,800)	.317(46,800)
	$380(10,600)$	512(13,800)	
	$240(49,800)$	276(47,000)	$317(4.000)$
	337(14,400)	$399(10,500)$	$513(12,800)$

"Data were taken from reference 6.

As reported previously. ${ }^{7}$ the rigidity of a tetramethylene bridge of the ligand 1 e at room temperature induces a siereogenic axis through 2 . 1^{\prime}-bond. In addition to such a stercogenic axis. the dissymmetry caused by forming $[\mathrm{Ru}(\mathrm{tpy})(1 \mathrm{e}-$ $N . N\rangle \mathrm{Cl}$ resulted in diastermeric mistures. which are confirmed by observation of a set of proton resonances in ${ }^{1} \mathrm{H}$ NMR spectrum and are not as yet separated.

In contrast to 1 d and 1e. the reaction of planar $1 f$ alforded a cyeloruthenated complex only. We reasoned that the planar naphthalene moiety not only develops severe steric congestion around the ruthenium core. but also is not able to deserve the stabilizing π-stacking between the two aromatic rings of two orthogonal ligands in 2. Such a steric congestion of the benzo h]quinoline moicty resulted in dissociation of ligand from the initially formed complex 2. and then underwent an axial attack to form an intermediate 3 which underwent cycloruthenation.

Electronic Properties. UV absorption spectral data of the pentaaza-coordinated complex [$\left.\mathrm{Ru}(\mathrm{tpy})\left(1 \mathrm{c}-\mathrm{N} . \mathrm{N}^{\prime}\right) \mathrm{Cl}\right]^{\prime}$ are summarized in Table 1. where the complexes showed four well-resolved absorption maxima in the ranges 220-240. $270-280.312-316$ and $500-513 \mathrm{~nm}$ with a similar cxtinction cocflicient for each. Absorption bands in the range of 500 510 mm are ientatively assigned to MLCT transitions by comparison with known $\left[\mathrm{Ru}(\mathrm{tpy})\left(\mathbf{1 a}-N . N^{\prime}\right) \mathrm{Cl}\right]^{+}$. The more planar dimethylene bridged system showed higher intensity in all the absorption bands which reflects more conjugative interaction between the two adjacent aromatic rings. The most highly distorted ictramethylene bridged system. however. showed stronger intensity compared to those of trimethylene bridged system which may be due to the better π stacking between the phenyl of the NN. (-terdentate ligand and central pyridine of the orthogonal tpy.

UV absorption spectrum of te showed six absorption maxima. four of them were at 240. 276. 317. and 513 nm which were comparable to those of 2 while additional two appeared at 337 . and 399 which is similar to those of $+\mathbf{a}$. These additional absorption maxima also support the formation of cycloruthenated complex.

In conclusion. N.N.C-terdentate ligands. 3.2'-polymethyl-
enc-6-(2"-pyridyl)-2-pheny lpyridines (1. HL) were smoothly reacted with $\mathrm{Ru}(\mathrm{tpy}) \mathrm{Cl}$, to alford two $\mathrm{Ru}(I I)$ complexes. a pentaaza-coordinated $\left[\mathrm{Ru}(\mathrm{tpy})\left(1-N N^{\prime}\right) \mathrm{Cl}\right]^{\prime}$ and a cycloruthenated $\left[\mathrm{Ru}(\mathrm{tpy})\left(\mathrm{L}-N . N^{\prime}(\mathrm{C})\right]^{\prime}\right.$ whose ratio are highly dependent on the length of the polymethylene unit. The highly distorted ligands 1 d and le formed the pentaara-coordinated $\left[\mathrm{Ru}(\mathrm{tpy})\left(1-N . N^{\prime}\right) \mathrm{Cl}\right]$ while the most planar 1 f formed cycloruthenated $\left[\mathrm{Ru}(\mathrm{tpy})\left(\mathrm{L}-N . N^{\prime} . C^{\prime}\right)\right]^{\prime}$ as an only product. Steric congestions imposed by the tri- and tetramethylene bridge in the pentaaza-coordinated system develop chiral axis through 2. l'-bond upon complexation to result an asymmetry in the complex thus differentiate II proton resonances of tpy:

Acknowledgment. Financial support from Yeungnam University Rescarch Grant (1998) is gratefully acknowlcdgcd.

References

1. Kalyanasundaram, K. Photochemisty of Potypyridine and Pomphin Complexes: Academic Press: San Diego, CA. 1992: p 87, and references therein.
2. (a) Collin, I.-P:: Beley, M.: Sauvage. I.-P': Barigelletti. F. horg. Chim. Acta 1991, 186, 91. (b) Constable, E. C.: Thompson, A. M. W. C.: Greulich. S. J. Chem. Soc. Chem. (\%mm 1993, 1444.
3. (a) Hegedus. I. S.: Allen, G.: Olsen, D. J. Am Chem. Soc. 1986. 102. 3538 (b) Marahasi, S.-I.: Tamba, Y.: Yamalmura, M. Yoshimura. N. J. Ofg. (hem. 1978, 43, 4099.
4. Suggs. T. W.: Higgins III, I. D.: Wagmer, R. W.: Millard, I. T Hetal-DNA (hemistry ed by Tullius: T. D. Гd: ACS Symposium Series 402, 1989: p 146.
5. (a) Constable, E. C.: I lenney, P? G.: Leese. T. A.: Tocher. D. A. J. Chom. Soc., Dallon Tians. 1990, 443. (b) Y. Jahng. Unpublished results: The bis-coordinated compleves. $\left[\mathrm{Ru}(\mathrm{II})\left(\mathbf{1 c}-\mathrm{f}-\mathrm{A}, \mathrm{N}^{2}\right)\right] \mathrm{Cl}$. are the major ($75-86 \%$) products isolable from a reaction misture of $\mathbf{1 c - f}$ with RuCl_{3} $3 \mathrm{H}_{2} \mathrm{O}$.
6. Constable, F. C.: Hamon, M. I. Inorg. (him Acta 1993, $21 / 101$.
7. Tahng, Y.: Thummel, R. P.: Bott, S. C. Inorg. (hem. 1997, 36, 3133
8. (a) Collman, J. P.: Hegedus, I.. S. Principles and Applica-
tions of Organotransition Metal Chemisty: University Science Books: 1980: p 213, and references therein. (b) Jahng, Y.: Thummel, R. P. J. Org (hem. 1987. 52. 73. (c) l’ark, l. G..: lahng, Y. Inorg. Chim. Acta 1998, 267, 265.
9. Riesgo, E. C.: Jin, X.: Thummel, R. P. J. Org. Chem.

1996, 61, 3017.
10. Dwyer, F. P?: Goodwin, II. A.: Gyarfas, F. (. Aust. J. Chem. 1963, 16, 42.
11. Thummel, R. P?. Jahng, Y. /horg Chem. 1985, 25, 2527.

