Synthesis of 3-Arylpropylamine Derivatives from Aryl Halides Using Heck Reaction

Gi Hyeon Baek, Sung Ju Cho, Young Sik Jung, Churl-Min Seong, Chang-Woo Lee, and No-Sang Park*
Bioorganic Devision, Korea Research Institate of Chemical Techmologr, P.O. Box 107, 1isong, Taejon 305-606, Korea
Received Vovember 27, 1998

As a part of our rescarch directed toward the development of new capsaicinoids as analgesics. ${ }^{1}$ we found that N -(3 -phe-nylalkyl)-homovanillic amide $\mathbf{1}$ has excellent in wo analgesic activily in mice model test and the results of our sludy were published. ${ }^{-}$In the reports. we emphasized that the chain length of phenylalkyl part of $\mathbf{1}$ is critical to provide high amalgesic activity and threc-carbon lenglh ($\mathrm{n}=1$) is optimal. In the continuing our efforts to investigate further structural requirements we have focused on the synthesis of 3-aņlpropylamine derivative 2. which is a key intermediate for synuthesis of 1 .

1

2

Our initial attempt to synthesize 2 began with two-carbon homologation of substituted benzylchloride 3 using malonate chemistry to give 3 -arylpropionic acid 6 . which was converted to comesponding amine 8 (cq. 1). ${ }^{3}$ Palladium-catalyred hivdrogenation of substituted cinnamic acid 4 also gave 3 -arylpropionic acid 6. but the commercially available 4 is limited (cq. 2). ${ }^{3}$ Meerwein reactions of arylamine 5 with acrylonitrile in the presence of copper halide (I) or (II) catalyst gave α-halo- β-arylpropionitrile 7 and then LiAlH_{4} reduction of 7 provided corresponding amine 8 . However. apperance of Sandmeyer reaction type product and removal of the undesired halogen group of 7 were problematic (cq. 3). ${ }^{1}$

The palladium-catalyed coupling of aryl or vinyl halide with olefin. which was discovered by R. F. Heck in the late sixties. has been a comenient method for fonming carboncarbon bonds in organic synthesis. ${ }^{5}$ The direction of addition of aryl halide to olefin appears to be sterically controlled.

However. in the case of α. β-unsaturated carbonyl. addition of aryl halide generally takes place predominantly on the electronically demanding β-carbon. Even in the literature. many reaction examples of aryl halide with variety of olefins are reported. but reactions of aryl halide with acry lamide and their further reactions to 3 -arylpropylamine are rare. ${ }^{6}$ Herein. we report a facile synthesis of 2 through three consequent steps: (1) Heck reactions of aryl halide and acrylamide. (2) palladium-cataly/ed hydrogenation of 3arylacrylamide. and (3) LiAlH_{4} reduction of 3-arylpropionamide.

3-Arylacrylamide 11a. 11b. 11e were obtained in high yields from either aryl iodide 9 or bromide $\mathbf{1 0}$ under typical Heck reaction condition using $\mathrm{Pd}(\mathrm{OAc})$. tri-o-tolylyphosphine. and $\mathrm{El}_{3} \mathrm{~N}$ in $\mathrm{McCN},{ }^{5}$ However. reaction of sterically bulky aryl bromide 10 laving methyl substituent at $\mathrm{C}-2$ or C-6 position (11c. 11d) was not completed within 2 days and gave low yiclds (Table 1), 3-Arylpropylamine 8 was obtained from 11 through conventional palladium-catalyed hydrogenation followed by LiAlH_{4} reduction. Eyen though LiAlH_{4} reduction of 11a could give 8a directly. the yield was lower (56%) than the combined yields (90%. 86%) of two scparated steps. Table 2 shows the synthesis of 3.3 -diarypropylamine 13. The introduction of second aryl group to 11 was also done by Heck reaction conditions to provide 3.3-diaryl substituted acrylamides 12. The Heck reactions were slowly occurred at reflex condition in DMF or ODCB as moderate yields. Even though 12 might exist as regioisomeric mixture (E w. Z). we could not distinguish clearly whether 12 was isomeric misture or not by ${ }^{1} \mathrm{H}$ NMR. 12 gave 3.3-diarylpropylamine $\mathbf{1 3}$ as described for 8 . Finally. 3arylpropylamine 16 or $\mathbf{2 0}$ which has methyl group on aliphatic chain was provided from $\mathbf{1 4}$ or $\mathbf{1 7}$ (Scheme 1).

Table 1. Synthesis of 3-Arylpropylamines 8 from Arylhalides and Acrolamide

			$\frac{\mathrm{Pd-Cl}}{\mathrm{THF}}$	g
9 or 10	11	(time. yield)	11 to 8(yield)	
			step (i)	step (ii)
3.4-Mes-PhI	11a	$1 \mathrm{l} .92{ }^{\circ}$	90°	86° o
3-Mc. $4-\mathrm{F}-\mathrm{PlBr}$	11b	$24 \mathrm{h} .92{ }^{\circ} 0$	96%	79° 。
$2.4 .5-\mathrm{Me}_{3}-\mathrm{PhBr}$	11c	2days. $63^{\circ} 0$	930	82° 。
2.3.5,6- $\mathrm{Me}_{4}-\mathrm{PhF3r}$	11d	2dass. 25°	870	966°
I-13romonaphthalene	11e	6h. 89° o	96°	61%

Table 2. Synthesis of 3.3-1 iarylpropylamine 13 from 3-Arylacrylamide 11 and Ar l iodide 9

		$\mathrm{A}_{12}^{\mathrm{Ar}_{\mathrm{C}}^{\mathrm{C}} \mathrm{O}_{2}}$		с. МеОН	${ }_{13}^{A T}$
11 (Ar)	9 (Ar^{\prime})	12	(condition.yield)	12	yield)
				step (i)	step (ii)
Ph	3-Mc-Ph	12a	ODCB. 24 h. 75%	91\%	99\%
Ph	$2.3-\mathrm{Mc}_{2}-\mathrm{Ph}$	12b	ODCB. 2day. 55%	98\%	90\%
3-Me-4-F-Pl	$\mathrm{Ph}_{3} 3.4-\mathrm{Me} \mathrm{e}_{2}-\mathrm{Ph}$	12c	D.MI: 3days. 95%	90\%	83\%
3-Thiony]	Ph	12d	D.MI: 3days. 51%	75\%	54\%

Scheme 1. (a) $\mathrm{Pd}(\mathrm{OAC})_{2}$. Tri-o-tolylphosphinc. $\mathrm{Et}_{3} \mathrm{~N}$. $\mathrm{CH}_{3} \mathrm{CN}$. rctlux. (b) $\mathrm{H}_{2} / \mathrm{IO} \%$ Pd-C. McOH . (c) LiAlH_{4}. THF. r.t. (d) $\mathrm{NH}_{2} \mathrm{OH}-$ $\mathrm{HCl} . \mathrm{NaHCO}$.

In summary, we could obtain 3-arylpropylamine 8, 16, 20 and 3,3-diarylpropylamine $\mathbf{1 3}$ from aryl halide $\mathbf{9 , 1 0}$ or $\mathbf{1 1}$ through three consequent steps including I feck reaction.

Experimental Section

All reactions were carried out under N_{2} atmosphere unless otherwise noted. McCN was distilled from CaH_{2} prior to use. Organic extracts or liltrates were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vactoo. Column chromalography was perlormed with Merek-EM Type 60 ($230-400 \mathrm{mesh}$) silica gel (flash). 'LI NMR spectra were measured by Varian Gemini 200 MHIz spectrometer. Chemical shifts are reported in ppon (δ) relative to TMS as internal standard. Mass spectrometric data determined by use of the electron impact (EIMS) method are reported as $\mathrm{m} /$ z (relative intensity). Melting points were uncorrected.
General method of Heck reaction. A mixture of aryl halide, acrylamide (1.1 equivalent of aryl halide), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (I to $4 \mathrm{~mol} \%$ of aryl halide), tri-o-tolylphosphine (4 to 10 $\mathrm{mol} \%$ of aryl halide $)$, and $\mathrm{Et}_{3} \mathrm{~N}$ (1.1 to 1.5 equivalent of aryl halide) in McCN, DMF, or ODCB was heated at rellux temperature. The reaction was monitored by TLC. The mixture was passed through a celite pad. Water was added and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give a crude solid which was recrystallized from EtOAcin-hexane.
3-(3,4-Dimethylphenyl)acrylamide 11a. A mixture of 4-iodo-o-xylene ($30.2 \mathrm{I} \mathrm{g}, 0.13 \mathrm{~mol}$), acrylamide (11.54 g .0 .16 $\mathrm{mol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.29 \mathrm{~g} .1 .3 \mathrm{mmol})$, tri-o-tolylphosphine
(1.58 g .5 .2 mmol), and $\mathrm{Et}_{3} \mathrm{~N}(23 \mathrm{~mL}, 0.16 \mathrm{~mol})$ in MeCN (54 mL) was heated at $100-105^{\circ} \mathrm{C}$ for 1 h . The mixture was passed through a celite pad. Water was added and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give a crude solid. The crude was recrystallized from EtO 人c/n-hexane to give 11 a $(20.87 \mathrm{~g}, 92 \%)$ as a white solid: mp $136-138{ }^{\circ} \mathrm{C}$; 'II NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Cl}_{5}\right), 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{5}\right), 5.85(\mathrm{br} \mathrm{s}$, III, NH$), 6.05(\mathrm{br} \mathrm{s}, ~ I \mathrm{II}, \mathrm{NH}), 6.4 \mathrm{I}(\mathrm{d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ClI})$, $7.09(\mathrm{~d}, J=7.7 \mathrm{IL}, \mathrm{III}, ~ \wedge \mathrm{rl}), 7.20(\mathrm{~d}, J=7.7 \mathrm{IL}, 1 \mathrm{II}, ~ \wedge \mathrm{rl})$, $7.25(\mathrm{~s}, 11 \mathrm{I}, \mathrm{Arl}), 7.56(\mathrm{~d}, J=15.7 \mathrm{~Hz}, \mathrm{II}, \mathrm{ClI})$, EIMS m/z $175\left(\mathrm{M}^{+}\right)$. 160, 129. 115.
3-(4-Fuoro-3-methylphenyl)acrylamide 11b. Reaction of 5 -Bromo-2-lluorotolucne (2.27 g .12 mmol), acrylamide $(1.02 \mathrm{~g}, 14.4 \mathrm{mmol}) . \mathrm{Pd}(\mathrm{OAc})_{2}(54 \mathrm{mg}, 0.24 \mathrm{mmol})$, $1 \mathrm{ri}-\mathrm{o}-$ tolylphosphine ($219 \mathrm{mg}, 0.72 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}$, $14.4 \mathrm{mmol})$ in $\mathrm{Cl}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was carricd out for 24 h as described for 11 a . The crude solid was recrystallized from EtOAc/n-hexane to give IIb ($2.0 \mathrm{~g} .92 \%$) as a white solid: mp 130-131 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{If}$ NMR (DMSO-d $\left.{ }_{6}\right) \delta 2.34$ ($\mathrm{s}, 31 \mathrm{~L}, \mathrm{ClI}_{3}$), $6.58(\mathrm{~d}, J=16.1 \mathrm{l} \angle, \mathrm{IJI}, \mathrm{CII}), 7.47(\mathrm{~d}, J=16.1 \mathrm{l} \angle, 1 \mathrm{I}, \mathrm{CH})$, 7.18-7.59 (m, 3II, Arll); EIMS m/c (rel. intensity) 179 (M^{+}, $56), 178$ (100), $164(62), 163$ (63), 135 (60), 133 (87), 115 (77).

3-(2,4,5-Trimethylphenyl)acrylamide IIc. Reaction of 5-Bromo-1,2,4-1rimethylbenzene ($3.0 \mathrm{~g}, 15.1 \mathrm{mmol}$), acrylamide ($1.18 \mathrm{~g}, 16.5 \mathrm{mmol}), \operatorname{Pd}(\mathrm{OAc})_{2}(68 \mathrm{mg}, 0.3 \mathrm{mmol})$, tri-$o$-1olylphosphine ($275 \mathrm{mg}, 0.9 \mathrm{mmol}$), $\mathrm{E}_{3} \mathrm{~N}(1.83 \mathrm{~g}, 18.1$ mmol) in DMF (15 mL) was heated at $140-150^{\circ} \mathrm{C}$ for 2 days. The reaction mixture was passed through a celite pad and the filtrate was concentrated by vacuum distillation. Water was added and the mixture was extracted with EIOAc. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude solid was recrystallized from EtOAc/n-hexane to give $11 \mathrm{c}(1.8 \mathrm{~g}, 63 \%)$ as a white solid: mp 118 - 120.5 ${ }^{\circ} \mathrm{C}$; 'll NMR (CDCl_{3}) $\delta 2.28$ ($\mathrm{s}, 6 \mathrm{ll}, 2 \mathrm{ClI}_{3}$) , 2.36 ($\mathrm{s}, 3 \mathrm{HI}$, $\left.\mathrm{Cl}_{3}\right), 5.53\left(\mathrm{brs}, 2 \mathrm{II}, \mathrm{NII}_{2}\right), 6.32(\mathrm{~d}, j=15.5 \mathrm{l} \mathrm{z}, 1 \mathrm{II}, \mathrm{ClI})$,
 III, Cl1).
3-(2,3,5,6-Tetramethylphenyl)acrylamide 11d. Reaction of I-bromo-2,3,5,6-tetramethylbenzene (3.0 g. 14 $\mathrm{mmol})$, acrylamide ($1.10 \mathrm{~g}, 15.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(63 \mathrm{mg}$, 0.28 mmol), tri-o-tolylphosphine ($0.26 \mathrm{~g}, 0.85 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ $(1.71 \mathrm{~g}, 17 \mathrm{mmol})$ in DMF (10 mL) was heated at $140-150$ ${ }^{\circ} \mathrm{C}$ for 2 days as described for 11 c . The crude solid was recrystallized from E1OAc/n-hexane to give $11 d(0.68 \mathrm{~g}$, 25%) as a white solid: $\mathrm{mp} 216-217{ }^{\circ} \mathrm{C}$: 1 ll NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $2.19\left(\mathrm{~s}, 6 \mathrm{II}, 2 \mathrm{Cl}_{3}\right), 2.26\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 5.60\left(\mathrm{br} \mathrm{s} .2 \mathrm{HI}, \mathrm{NJ} \mathrm{I}_{2}\right)$,
 $J=16.1 \mathrm{Il} \angle, \mathrm{ArCl})$.

3-Naphthalen-I-ylacrylamide 11e. Reaction of 1-bromonaphthalene ($2.0 \mathrm{~g}, 9.7 \mathrm{mmol}$), acrylamide ($0.75 \mathrm{~g}, 10.6$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(44 \mathrm{mg}, 0.19 \mathrm{mmol})$, tri-o-tolylphosphine $(176 \mathrm{mg}, 0.58 \mathrm{mmol})$, and $\mathrm{E}_{1} \mathrm{~N}(1.72 \mathrm{~g}, 11.6 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL})$ was carried out for 6 h as described for

11:. The crude solid was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}-$ hexane to give 11 e ($1.69 \mathrm{~g} .89 \%$) as a white soild: mp $177-$ $178.5{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 6.65$ (d, $J 15.7 \mathrm{~Hz} .1 \mathrm{H}$, CH). 7.20 (br s, 1H, NH N_{2}). $7.51-7.61$ (m. 3H. ArH). 7.65 (br s. $1 \mathrm{H} . \mathrm{NH}_{2}$). $7.76-7.79$ (m. 1H. ArH). 7.95-7.99 (m. 2 H . ArH). 8.18-8.23 (m. 1H. ArH). 8.20 (d. $J 15.7 \mathrm{~Hz} .1 \mathrm{H}$. CH): EIMS m/z (rel. intensity) 197 ($\mathrm{M}^{\prime} .19$). 155 (67), 1.54 (100).

General Method of Hydrgenation Reaction of Acryla-

 mide. A misture of acrylamide and $10 \% \mathrm{Pd} / \mathrm{C}$ ($10 \mathrm{wt} \%$ of acry lamide) in MeOH was stirred under H_{2}. The reaction misture was passed through a celite pad and the filtrate was concentrated to give a crude propionamide which was recry stallized from EtOAc/n-hexane.General Method of LiAlH_{+}Reduction of Propionamide. To a misture of LiAlH_{1} in THF was added a solution of propionamide in THF. and the mixture was stirred at r.t. or heated at reflux temperature. $\mathrm{MeOH} . \mathrm{H}_{2} \mathrm{O}$ followed by 1 N NaOH solutions were added and the resulting misture was passed through a celite pad. The filtrate was concentrated under reduced pressure and purified by vacumm distillation.

3-(3,4-Dimethylphenyl)propylamine 8a. A mixture of $11: 3(0.11 \mathrm{~g} .0 .63 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.02 \mathrm{~g})$ in $\mathrm{MeOH}(5$ mL) was stirred under H_{2} balloon for 2 h . The reaction mixture was passed through a celite pad and the filtrate was concentrated to give a crude 3-(3.4-dimethylphenyl)propionamide ($0.10 \mathrm{~g} .90 \%$) as a white solid: $\mathrm{mp} 115-117^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.21\left(\mathrm{~s} .6 \mathrm{H} .2 \mathrm{ArCH}_{3}\right) .2 .49(\mathrm{t} . J 7 \mathrm{~Hz} .2 \mathrm{H}$, CH_{2}). $2.88\left(\mathrm{t}, J 7 \mathrm{~Hz} .2 \mathrm{H} . \mathrm{CH}_{2}\right), 5.60$ (br s. 1H. NH), 6.02 (brs. 1H. NH). 6.89-7.25 (m. 3H. ArH).

To a minture of $\mathrm{LiAlH}_{\mathrm{I}}(10.17 \mathrm{~g} .0 .268 \mathrm{~mol})$ in THF (290 mL) was added a solution of 3-(3.+-dimethylphenyl)propionamide ($19.3 \mathrm{~g}, 0.109 \mathrm{~mol}$) in THF (160 mL), and the misture was heated at reflux temperature for 5 h . $\mathrm{MeOH} . \mathrm{H}_{2} \mathrm{O}$ followed by 1 N NaOH solutions were added and the resulting misture was passed through a celite pad. The filtrate was concentrated under reduced pressure and purified by vacumm distillation to give 8a($15.3 \mathrm{~g} .86 \%$): bp $140-150^{\circ} \mathrm{C}(0.5$ munHg) : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.32$ (br s. $2 \mathrm{H}, \mathrm{NH}_{2}$). $1.7+$ (quint, $J 7 \mathrm{~Hz} .2 \mathrm{H} . \mathrm{CH}_{2}$). 2.23 (s. $3 \mathrm{H} . \mathrm{CH}_{3}$). $2.2+$ ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}). $2.59\left(\mathrm{t} . J 7 \mathrm{~Hz} .2 \mathrm{H} . \mathrm{CH}_{2}\right) .2 .72\left(\mathrm{t} . J 7 \mathrm{~Hz} .2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $6.91-7.06(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH})$.
3-(4-Fuoro-3-methylphenyl)propylamine 8b. A mixture of 11b (1.4 g .7 .8 mmol) and $10 \% \mathrm{Pd} / \mathrm{C}(0.1+\mathrm{g})$ in MeOH (20 mL) was carried out for 24 h as described for 8 a to give 3-(4 -fuoro-3-methy lphenyl)propionamide ($1.36 \mathrm{~g}, 96 \%$) as a white solid: mp 93-9+ ${ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.23$ (s. 3 H . CH_{3}). $2.48\left(\mathrm{t}, J 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .2 .89(\mathrm{t}, J 7.5 \mathrm{~Hz} .2 \mathrm{H}$, CH_{2}). 5.40 (br s. $2 \mathrm{H}, \mathrm{NH}_{2}$). $6.8+7.01$ (m, $3 \mathrm{H}, \mathrm{ArH}$): EIMS m / z (rel. intensity) 181 ($\mathrm{M}^{+} .37$). 136 (54). 123 (100).
Reaction of 3-(+-fuoro-3-methylphenyl)propionamide (1.21 g .6 .2 mmol) and $\mathrm{LiAlH}_{4}(47 \mathrm{mg} .12 .4 \mathrm{mmol})$ was carried out as described for 8a. and the cnide was purified by vacuum distillation to give $\mathbf{8 b}$ ($820 \mathrm{mg} .79 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.35$ (br s. $2 \mathrm{H}, \mathrm{NH}_{2}$) 1.71 (quint. $J 7.3 \mathrm{~Hz} .2 \mathrm{H}$, CH_{2}). 2.23 (s. $3 \mathrm{H}, \mathrm{CH}_{3}$). 2.58 (t. $J 7.3 \mathrm{~Hz} .2 \mathrm{H} . \mathrm{CH}_{2}$). 2.69
(t. J $7.3 \mathrm{~Hz} .2 \mathrm{H}, \mathrm{CH}_{2}$), 6.83-7.00 (m. $3 \mathrm{H}, \mathrm{ArH}$): EIMS m/z (rel. intersity) 167 (M'. 4), 166 (18), 150 (23), 135 (19).

3-(2,4,5-Trimethylpheny)propylamine 8c. A mixture of $11 \mathrm{c}(1.79 \mathrm{~g} .9 .47 \mathrm{nmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.18 \mathrm{~g})$ in MeOH (20 mL) was carried out for 24 h as described for 8 a to give 3 -(2.4 .5 -trimethy lphenyl)propionamide ($1.68 \mathrm{~g} .93 \%$) as a white solid: mp $143-147^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.18$ (s. 6 H , $2 \mathrm{CH}_{3}$). $2.24\left(\mathrm{~s} .3 \mathrm{H} . \mathrm{CH}_{3}\right) .2 .49\left(\mathrm{t} . J 7.3 \mathrm{~Hz} .2 \mathrm{H} . \mathrm{CH}_{2}\right.$). 2.90 (t. $J 7.3 \mathrm{~Hz} .2 \mathrm{H}, \mathrm{CH}_{2}$). 5.34 (br s. $2 \mathrm{H} . \mathrm{NH}_{2}$), 6.90 (s. 2 H . ArH): EIMS n/z (rel intensity) 191 (M, 74). 17+ (45). 1+6 (29). 133 (100).

Reaction of 3-(2,4.5-trimethylphenyl)propionamide (1.63 g. 8.63 mmol) and LiAlH_{4} was carried out as described for 8a. and the crude was purified by column chromatograply to give $8 \mathrm{c}(1.24 \mathrm{~g} .82 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.69$ (quint, $J 7.3 \mathrm{~Hz} .2 \mathrm{H}, \mathrm{CH}_{2}$), $2.16\left(\mathrm{~s} .6 \mathrm{H} .2 \mathrm{CH}_{3}\right), 2.3+$ (s. $3 \mathrm{H} . \mathrm{CH}_{3}$). $2.56\left(\mathrm{t} . J 7.0 \mathrm{~Hz} .2 \mathrm{H}, \mathrm{CH}_{2}\right) .2 .75(\mathrm{t} . J 7.0 \mathrm{~Hz}$. $2 \mathrm{H} . \mathrm{CH}_{2}$), 6.90 (s. $2 \mathrm{H}, \mathrm{ArH}$): EIMS ni/z (rel. intensity) 177 (M, 7). 160 (47). 145 (100), 133 (28).

3-($2,3,5,6$-Tetramethylphenyl)propylamine 8d. A nuxture of $11 \mathrm{~d}(680 \mathrm{mg} .3 .49 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(70 \mathrm{mg})$ in $\mathrm{MeOH}(20 \mathrm{~mL}$) was carried out for $2+\mathrm{h}$ as described for $\mathbf{8 a}$ to give 3-(2,3.5,6-tetramethylphenyl)propionamide (650 mg . 87%) which was used for next step without further purification: ' H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.24\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right) .2 .39(\mathrm{t} . J 8.6$ $\mathrm{Hz} .2 \mathrm{H} . \mathrm{CH}_{2}$) .3 .08 (t, $, J 8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$). 5.38 (br s. 2 H , NH_{2}) , 6.89 (s. $2 \mathrm{H}, \mathrm{ArH}$).

Reaction of 3-(2,3.5,6-tetramethylphenyl)propionamide ($650 \mathrm{mg}, 3.38 \mathrm{mmol}$) and LiAlH_{4} was carried out as described for 8a. and the crude was purified by vacuum distillation using Kugelrohr apparatus to give $\mathbf{8 d}(580 \mathrm{mg}$. 90%) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.65$ (quint. J $7.1 \mathrm{~Hz} .2 \mathrm{H} . \mathrm{CH}_{3}$), 2.20 (s. $6 \mathrm{H} .2 \mathrm{CH}_{3}$), 2.22 (s. $2 \mathrm{CH}_{3}$), $2.69\left(\mathrm{t} . J 7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .2 .83\left(\mathrm{t} . J 7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. $6.8+$ (s. 1H, ArH).

3-Naphthalen-1-ylpropylamine 8e. A mixture of 11e $(1.69 \mathrm{~g}, 8.48 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(160 \mathrm{mg})$ in $\mathrm{MeOH}(20$ mL) was carried out for $2+\mathrm{h}$ as described for 8 a to give 3-naphthalen-1-ylpropionamide ($650 \mathrm{mg} .87 \%$) which was used for next step without further purification: mp 99-101 ${ }^{4} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.48\left(\mathrm{t} . J 7.6 \mathrm{~Hz} .2 \mathrm{H} . \mathrm{CH}_{2}\right) .3 .29(\mathrm{t}$. J $7.6 \mathrm{~Hz} .2 \mathrm{H}, \mathrm{CH}_{2}$) .6 .83 (brs. $2 \mathrm{H}, \mathrm{NH}_{2}$). $7.35-7.58$ (m. 4 H . ArH). 7.60-7.79 (m. 1H. ArH). 7.90-7.95 (m. 1H. ArH), $8.07-8.12$ (m. IH. ArH): ELMS m/z 199 (M-. 32). 153 (79), 141 (100).
Reaction of 3-naphthalen-l-ylpropionamide (1.60 g .8 .04 $\mathrm{mmol})$ and $\mathrm{LiAlH}_{\perp}(603 \mathrm{mg} .15 .9 \mathrm{mmol})$ was carried out as described for 8 a. and the crude was purified by column chromatography to give $\mathbf{8 e}(910 \mathrm{mg}, 61 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.88$ (quint. $/ 7.6 \mathrm{~Hz} .2 \mathrm{H}, \mathrm{CH}_{2}$) 2.02 (brs. $2 \mathrm{H} . \mathrm{NH}_{2}$). $2.80\left(\mathrm{t} . J 7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .3 .10(\mathrm{t} . J 7.6 \mathrm{~Hz}$. $2 \mathrm{H} . \mathrm{CH}_{2}$), $7.30-7.54$ (m. +H. ArH), 7.67-7.71 (m. 1H. ArH), 7.79-7.85 (m. 1H. ArH), 8.02-8.08 (m. IH. ArH).

3-Phenyl-3-m-tolylacrylamide 12a. Reaction of 3-pheny lacrylamide ($2.2 \mathrm{~g} .1+.7 \mathrm{mmol}$) and iodobenzene in ODCB was carried out for 24 has described for 11a to give 12a (2.6 g. 75%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.33$ (s. $3 \mathrm{H}, \mathrm{ArCH}_{3}$) 5.14 (brs.

1H, NH), 5.57 (br s, 1H. NH). 6.38 (s. 1H, ArCH), 7.04-7.48 (m. 9H. ArH): ElMS m/z (rel. intensity) 237 (M, 63). 236 (100). 178 (56). 115 (33)

3-(2,3-Dimethylphenyl)-3-phenylacrylamide 12b. A solution of 3-phenylacry lamide (1.5 g .10 .1 mmol). 3-iodo-$o-\mathrm{xy}$ lene ($2.8 \mathrm{~g}, 12.1 \mathrm{mmol}$). $\mathrm{Pd}(\mathrm{OAc})=(4.5 \mathrm{mg} .0 .2 \mathrm{mmol})$, tri- 0 -tolylphosphine ($185 \mathrm{mg}, 0.6 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(1.2 \mathrm{~g}$. 12.2 munol) in ODCB (20 mL) was heated at reflux temperature for 2 days. The reaction mixture was passed through a pad of celite and the filtrate was concentrated in vacuo. Water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, and purified by column chromatography to give 12b (1.+g. 55\%) as a white solid: mp $138-140^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $\delta 2.18$ (s. $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.01(\mathrm{~s} .1 \mathrm{H} . \mathrm{CH}), 7.07-7.37$ (m, 10H. $\mathrm{NH}_{2} . \mathrm{ArH}$): EIMS m/z (rel. intensity) 251 (M.22). 236 (90). 206 (100).
3-(3,4-Dimethylphenyl)-3-(4-fluoro-3-methyphenyl)acrylamide 12 c . Reaction of 3-(4-fluoro-3-methylphenyl)acrylamide 11 b ($180 \mathrm{mg}, 1.00 \mathrm{mmol}$). t-iodo- $\%$-xylene (280 mg .1 .2 mmol). $\mathrm{Pd}(\mathrm{OAc})=(5 \mathrm{mg} .0 .02 \mathrm{nmol})$, tri- ()$-$ tolylphosphine ($18.3 \mathrm{mg}, 0.06 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ (122 mg . 1.2 mmol) in DMF (10 mL) was carried out for 3 days as described for 12b to give 12c ($270 \mathrm{mg}, 95 \%$) as a white solid: mp 99-100 ${ }^{\circ} \mathrm{C}$: ${ }^{\prime} \mathrm{H}$ NMR (DMSO-d ${ }^{2}$) $\delta 2.30$ (s, 9H. $3 \mathrm{CH}_{3}$), 6.43 (s. 1H. CH), 6.94-7.22 (m, 8H, NH․ ArH): EIMS m/z (rel. intensity) $28+\left(\mathrm{M}^{\circ} .26\right.$) , 283 (100), 282 (100). 286 (50). 267 (39). 239 (3+). 133 (48).

3-Phenyl-3-thiophen-3-yl-acrylamide 12d. Reaction of 3-thiophen-3-yl-acry lamide (1.46 g .9 .5 mmol) and iodobenzene was carried out in DMF for 3 days as described for 11b to give $\mathbf{1 2 d}(1.1 \mathrm{~g} .51 \%)$ as a white solid: $\mathrm{mp} 131-133^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 5.30$ (br s. $2 \mathrm{H}, \mathrm{NH}_{2}$). 6.42 (s. $1 \mathrm{H} . \mathrm{CH}$), $6.88-7.50$ (m. 8H. ArH): EIMS m/z (rel. intensity) 229 (M^{\prime}. 95). $18+$ (100). 152 (37). 139 (26).

3-Phenyl-3-m-tolylpropylamine 13a. A mixture of 12a (2.6 g .11 mmol) and $10 \% \mathrm{Pd} / \mathrm{C}$ in MeOH was carried out for 17 h as described for 8 a to give 3 -phenyl-3-m-toly lpropionamide ($2.4 \mathrm{~g} .91 \%$) as a white solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 2.28 (s. $3 \mathrm{H} . \mathrm{CH}_{3}$). 2.91 (d. $2 \mathrm{H} . J 7.7 \mathrm{~Hz}, \mathrm{CH}_{2}$). 4.48 (t. 1 H. J $7.7 \mathrm{~Hz} . \mathrm{CH}$). 5.29 (br s. $2 \mathrm{H}, \mathrm{NH}_{2}$). $6.96-7.31$ (m. 9 H . ArH): EIMS m/z (rel. intensity) 239 ($\mathrm{M}^{+} .54$). $19+(49)$. 181 (100). 167 (65). 166 (70). 165 (73).

Reaction of 3-phenyl-3-m-tolylpropionamide (2.4 g . 10 mmol) and LiAlH_{4} was carried out as described for 8a to give 13a ($2.2+\mathrm{g}, 99 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.20$ (br s. 2 H . NH_{2}). $2.10-2.21$ (m. $2 \mathrm{H}, \mathrm{CH}_{2}$). 2.28 (s. $3 \mathrm{H}, \mathrm{CH}_{3}$). 2.63 (t , $\left.J 7.0 \mathrm{~Hz}, 2 \mathrm{H}, ~ \mathrm{NCH}_{2}\right) .3 .95(\mathrm{t} . J 7.8 \mathrm{~Hz} . \mathrm{IH} . \mathrm{CH}), 6.94-7.25$ (m. 9H. ArH) : EIMS m/z (rel. intensity) 225 ($\mathrm{M}^{+} .9$). 208 (51). 193 (100). 166 (72). 165 (75).

3-(2,3-Dimethylphenyl)-3-phenylpropylamine 131). A mixture of $\mathbf{1 2 b}$ ($800 \mathrm{mg}, 3.2 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}$ in MeOH was carried out for 22 h as described for 8a to give 3-(2.3-dimethylphenyl)-3-phenylpropionamide (800 mg . 98%) as cnude which was used for next step without further purification: ${ }^{1} \mathrm{H}^{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.18$ (s. $6 \mathrm{H} . \mathrm{CH}_{7}$) 2.90 (d. . 7.6 $\left.\mathrm{Hz} .2 \mathrm{H} . \mathrm{CH}_{2}\right)+.82(\mathrm{t} . J 7.6 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{CH}) .5 .35(\mathrm{br} \mathrm{s} .2 \mathrm{H}$.
NH_{2}), 7.03-7.29 (m, 8H. ArH): EIMS m/z (rel. intensity) 253 (M'. 56). 195 (99). 180 (100), 179 (94), 165 (68).

Reaction of 3-(2,3-dimethylphenyl)-3-phenylpropionamide (830 mg .3 .3 mmol) and LiAlH_{4} was carried out as described for 8a to give 13b ($800 \mathrm{mg} .99 \%$): 'H NMR $\left(\mathrm{CDCl}_{5}\right) \delta 1.84$ (br s. $2 \mathrm{H}, \mathrm{NH}_{2}$). $2.10-2.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ 2.18 (s. $3 \mathrm{H}, \mathrm{ArCH}_{3}$), 2.26 (s. $3 \mathrm{H}, \mathrm{ArCH}_{3}$), $2.70(\mathrm{t}, J 7.3 \mathrm{~Hz}$. $2 \mathrm{H} . \mathrm{CH}_{z}$). 4.29 (t. $J 7.5 \mathrm{~Hz} .1 \mathrm{H} . \mathrm{CH}$). $7.02-7.33$ (m. 8 H . ArH): EIMS m/z (rel. intensity) 240 (M , 18). 208 (59). 207 (100), 179 (72), 165 (87).

3-(3,4-Dimethylphenyl)-3-(4-fluoro-3-methylphe-

 nyl) propylamine 13c. A mixture of $12 \mathrm{c}(250 \mathrm{mg}, 0.9$ mmol) and $10 \% \mathrm{Pd} / \mathrm{C}$ in MeOH was carried out for 20 h as described for 8 a to give 3-(3.4-dimethy lphenyl)-3-(4-fluoro3 -methylphemyl)propionamide ($240 \mathrm{mg}, 96 \%$) as a white solid: mp 100-101 ${ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.21$ (s. 9 H . $\left.3 \mathrm{CH}_{3}\right) .2 .89\left(\mathrm{~d} . J 7.6 \mathrm{~Hz}, 2 \mathrm{H} . \mathrm{CH}_{2}\right), 4.42(\mathrm{t} . J 7.6 \mathrm{~Hz}, 1 \mathrm{H}$. CH), 5.25 (br s. $2 \mathrm{H}, \mathrm{NH}_{2}$). $6.85-7.08$ (m. $6 \mathrm{H}, \mathrm{ArH}$): EIMS m / z (rel. intensity) 285 (M'. 42), 240 (36), 228 (39). 227 (100), 225 (21), 212 (32), 221 (22)Reaction of 3-(3.4-dimethy lphenyl)-3-(4-fluoro-3-methylphenyl)propionamide ($240 \mathrm{mg}, 0.8+\mathrm{nmol}$) and LiAlH_{4} was carried out as described for 8 a to give 13 c (190 mg .
 $\left.\mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}, 6 \mathrm{H}_{2} 2 \mathrm{CH}_{3}\right) .2 .05-2.15\left(\mathrm{~m}, 2 \mathrm{H}_{2} \mathrm{CH}_{2}\right), 2.62(\mathrm{t}$. .J $7.2 \mathrm{~Hz}, 2 \mathrm{H} . \mathrm{CH}_{2}$). 3.87 (t. $J 7.0 \mathrm{~Hz} .1 \mathrm{H} . \mathrm{CH}$). $6.87-7.0+$ (m. 6H. ArH): ElMS mi/z (rel. intensity) 277 (M'. 6). 254 (24). 240 (20). 239 (100), 197 (39), 176 (21).

3-Phenyl-3-thiophen-3-yl-propionamine 13d. A mixture of $\mathbf{1 2 d}$ ($400 \mathrm{mg}, 1.92 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(50 \mathrm{mg})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ was carried out for 24 h as described for $8 \mathbf{a}$ to give 3-pheryl-3-thiophen-3-yl-propionamide (330 mg . $75 \%)$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.83$ (dd. $J 14.5 .7 .8 \mathrm{~Hz} .1 \mathrm{H}$. CH) , 2.96 (dd. $J 1+5.7 .+\mathrm{Hz}, 1 \mathrm{H} . \mathrm{CH}), 4.59(\mathrm{t} . J 7.7 \mathrm{~Hz}$. IH. CH), 6.88-6.91 (m. IH. ArH), 6.98-7.00 (m. lH. ArH) 7.19-7.29 (m, 6H. ArH)

Reaction of 3-phenyl-3-thiophen-3-yl-propionamide (320 mg. 1.38 mmol) and LiAlH , was carried out as described for 8a to give $\mathbf{1 3 d}(160 \mathrm{mg} .54 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) δ 2.15-2.25 (m, 2H. CH- $) .2 .64-2.71\left(\mathrm{~m}, 4 \mathrm{H}_{4} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{NH}_{2}\right)$. 4.09 (t. $J 7.5 \mathrm{~Hz} .1 \mathrm{H} . \mathrm{CH}) .6 .87-6.90$ (m. 1H. ArH). $6.97-$ 6.99 (m. IH. ArH). 7.16-7.30 (m. 6H. ArH): EIMS m/z 217 ($\mathrm{M}^{-}, 7$). 200 (80). 185 (27). 173 (61). 71 (100).

3-(3,4-Dimethylphenyl)-2-methyl-2-pmpenamide 15. Reaction of 4 -iodo- θ-xylene 9 (10.0 g .43 .1 mmol). methacrylamide 14 (9.0 g .107 mmol). $\mathrm{Pd}(\mathrm{OAc})=(0 .+\mathrm{g} .18$ mmol). tri-o-tolylphosphine (1.0 g .3 .3 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(15$ mL .107 mmol) in MeCN (15 mL) was carried out for 15 h as described for 11a. The crude was recrystallized ($\mathrm{EtOAc} /$ n-hexane) to give $\mathbf{1 5}$ ($6.3 \mathrm{~g} .77 \%$) as a white solid: mp 8+-86 ${ }^{0} \mathrm{C}:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.11$ (s. $3 \mathrm{H} . \mathrm{CH}_{\mathrm{i}}$). 2.26 (s. 6 H . $2 \mathrm{CH}_{3}$). $5.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.94$ (brs. $2 \mathrm{H} . \mathrm{NH}_{2}$). $7.11-7.35(\mathrm{~m}$. 3H. ArH): EIMS m/z (rel. intensity) 189 ($\mathrm{M}^{+} .56$). 188 (50). $17+(87), 14+(66), 128$ (100). 115 (55). 91 (35). 77 (37).

3-(3,4-Dimethylphenyl)-2-methyl-2-pmpanamine 16. Reaction of 3-(3.t-dimethylphenyl)-2-methyl-2-propenamide 15 (5.4 g .28 .6 mmol) and $\mathrm{Pd} / \mathrm{C}(10 \%)$ in MeOH (160
mL) was carried out for 3 h as described for 8 a to give 3-(3.4-dimethylphenyl)-2-methỵl-2-propanamide ($5 .+\mathrm{g} .99 \%$) as a crude which was used for next step without further purification: mp 95-96 ${ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.18$ (d. $J 6.0$ Hz. $3 \mathrm{H} . \mathrm{CH}_{3}$). 2.22 (s. 6H. $2 \mathrm{CH}_{3}$). 2.46-2.65 (mi. $2 \mathrm{H} . \mathrm{CH}_{2}$). 2.88-2.94 (m, lH. CH). 5.27 (br s. 1H, NH), 5.50 (br s. 1 H , NH). 7.02-7.26 (m, 3H. ArH): EIMS m/z (rel. intensity) 191 (M', 73) , 190 (39), 176 (26), 159 (27), 146 (52), 119 (100).

Reaction of 3-(3.4-dimethylphenyl)-2-methyl-2-propanamide (5.4 g .28 mmol) and $\mathrm{LiAlH}_{4}(2.0 \mathrm{~g}, 52.6 \mathrm{mmol})$ in THF was carried out as described for 8a to give $16(4.5 \mathrm{~g}$. 90%) as an oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.87$ (d..$J 6.8 \mathrm{~Hz} .3 \mathrm{H}$. CH_{3}). $1.3+$ (br s. $2 \mathrm{H} . \mathrm{NH}_{2}$). 1.67-1.78 (m, 1H. CH). 2.22 (s. $6 \mathrm{H}, 2 \mathrm{CH}_{3}$). $2.2+2.35$ (m, 1H. CH). $2 .+4-2.69$ ($\mathrm{m}, 3 \mathrm{H}$. $\left.\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{-}\right), 6.85-7.2+(\mathrm{mm}, 3 \mathrm{H} . \mathrm{ArH})$.
+(3,4-Dimethylphenyl)-3-buten-2-one 18. Reaction of 4-iodo-o-xylene (6.0 g .25 .9 mmol). methyl vinyl ketone $(2.8 \mathrm{~g} .40 .0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})=(0.4 \mathrm{~g} .1 .8 \mathrm{mmol})$, tri- 0 tolylphosphine (0.5 g .1 .8 mmol), and $\mathrm{Et}_{3} \mathrm{~N}(15 \mathrm{~mL}, 107$ munol) in MeCN (15 mL) was carried out for 6 h as described for 11a. The crude was purified by column chromatography (EtOAc:n-hexane $=1: 4)$ to give $18(+.3 \mathrm{~g} .96 \%)$ as a white solid: $\mathrm{mp} 50-51{ }^{\circ} \mathrm{C} \cdot{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.30$ (s. $6 \mathrm{H}, 2 \mathrm{CH}_{3}$). 2.38 (s. $3 \mathrm{H} . \mathrm{COCH}_{3}$). 6.68 (d..$J 16.4 \mathrm{~Hz} .1 \mathrm{H}$. CH). 7.15-7.33 (m. $3 \mathrm{H} . \mathrm{ArH}$). 7.48 (d. $J 16.4 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{CH}$), EIMS m/z (rel. intensity) $17+$ (M'. 14). 159 (100). 131 (28). 115 (37). 91 (42). 77 (19).
+(3,4-Dimethylphenyl)-3-butanone oxime 19. Reaction of 4 -(3. 4 -dimethylphenyl)-3-buten-2-one 18 (4.0 g .23 .0 munol) and $\mathrm{Pd} / \mathrm{C}(10 \%)$ in EtOAc (60 mL) was carried out for 3 h as described for 8 a to give + -(3.t-dimethylphenyl)-3butanone ($3.9 \mathrm{~g}, 96 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{5}\right) \delta 2.15$ ($\mathrm{s}, 3 \mathrm{H}$. COCH_{3}). 2.24 ($\mathrm{s}, 3 \mathrm{H} . \mathrm{CH} 3$), 2.25 (s. $3 \mathrm{H} . \mathrm{CH}_{3}$). 2.71-2.89 (m. $4 \mathrm{H} . \mathrm{CH}_{2} \mathrm{CH}_{2}$). 6.91-7.08 (m. 3 H . ArH): ElMS m/z (rel. intensity) 176 (M', 40). 133 (8+). 119 (100). 105 (20), 84 (24). 77 (20).

A mixture of 4 -(3.- - -dimethylphenyl)-3-butanone (3.9 g . 22.1 mmol), hydroxylamine hydrochloride ($3.1 \mathrm{~g},+4.6$ mmol), and $\mathrm{NaHCO}_{3}(3.7 \mathrm{~g} .+4.2 \mathrm{mmol})$ in a mixture solvent of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL} / 45 \mathrm{~mL})$ was stirred for 17 h . The mixture was filtered and the filtrate was concentrated under
reduced pressure to give 19 ($3.9 \mathrm{~g} .92 \%$) as a solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.92\left(\mathrm{~s}, 3 \mathrm{H} . \mathrm{COCH}_{3}\right), 2.22\left(\mathrm{~s} .3 \mathrm{H} . \mathrm{CH}_{3}\right) .2 .23(\mathrm{~s}$, $3 \mathrm{H} .2 \mathrm{CH}_{3}$), 2.48 (t, $J 7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{NOH})$). 2.76 (t. $J 7.5 \mathrm{~Hz}, 2 \mathrm{H} . \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{NOH})$). 6.92-7.06 (m. 3 H , ArH): EIMS ni/z (rel. intensity) 191 (M, 14). $17+$ (12). 159 (14). 133 (41). 119 (100). 115 (12). 91 (28).

3-(3,4-Dimethylphenyl)-1-methylpropylamine 20 . To a solution of 4 -(3.t-dimethylphenyl)-3-butanone oxime 19 $\left(3.9\right.$ g. 20.4 mmol) in THF (80 mL) was added $\mathrm{LiAlH}_{1}(1.5$ g. 40.0 mmol) and stirred at $r i$. for 12 h . Normal workup as described for 8a gave 20 ($3.2 \mathrm{~g}, 90 \%$) as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.15\left(\mathrm{~d} . J 6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .1 .68$ (q.J 7.7 Hz 2H. $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$). 2.22 (s. $6 \mathrm{H}, 2 \mathrm{CH}_{3}$), 2.56-2.63 (m. $2 \mathrm{H} . \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$), 2.89-3.02 (m. $1 \mathrm{H}, \mathrm{CH}$). 6.92-7.05 (m. 3H. ArH), EIMS m/z (rel. intensity) 177 (M' 5). 160 (48), 145 (54). 119 (51), 105 (16), 91 (26), 85 (37) 77 (21).

Acknowledgment. This work was financially supported by the Korea Ministry of Science and Technology.

References

1. Walpole, C. S. J.: Wrigglesworth, R.: Bevan, S.: Campbell, E. A.: Dray, A. . James, I. F.: Perkins, M. N.: Reid, D. T.: Winter, J. J. Med. Chem. 1993, 36, 2362, 2373, 2381.
2. (a) Park, N.-S.: Choi, J.-K.: Hong, M.-S. : Kim, HI.-S.: Lee, J. C.: Choi, S. W.: Lee, B.-Y. Korean J. Ifed. (hem. 1993, 3, 142. (b) Back, G. HI.: Jung, Y. S.: Cho, S. J.: Seong, C. M.: Park, N. S. .1rch. Pharm. Res. 1997, 20,659
3. (a) l’ark. N.-S.: Ha, D-C.: Choi. J.-K.: Kim. H.-S.: Lim, H.-I. I Lee, B.-Y korean J. hed. Chem 1991, I, 36. (b) I, im, H.-J.: Jung, Y. S.: Ha, I -C.: Seong. C.-M.: Lee, J. C.: Choi, J.: Choi. S. W.: Han. M.-S.: I.ee, K.-S.: Park. N. S. Atch. Pham. Res. 1996, 19, 246
4. (a) Doyle, M. P: Siegtried, B.: Dellaria. J. F. ./. Ofg. (hem. 1977, 12, 2426. (b) Doyle, M. P.: Sieglined, B.: Elliott, R. C.: Dellaria, J. F.J. Oyg. (hem. 1977. +2. 2431.
5. (a) IIeck, R. F. Ong. React. 1982, 27, 345, (b) IIeck, R. F. . Icc. Chem. Res. 1979, 12, 146.
6. Patel. B. A.: Ziegler, C. B.: Cortese, N. A.: Plevyak, I. E.: Zeboritz, T. C.: Terpko, M.: IIeck, R. F. J. Oig. Chem. 1977. 42,3903
