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Electrophilic substitution in pyrrole occurs predominantly 
at the C2-position.1~3 Thus, the investigation of efficient meth
ods for preparing C3-substituted pyrroles is one of the impor
tant goals in pyrrole chemistry because of their frequent uses 
for obtaining various biological active compounds like por
phyrins. For the substitution on 0-(C3) position, Friedel- 
Crafts acylation or alkylation on pyrrole bearing electron
withdrawing substituent at C24~8 or N19,10 has been widely 
investigated.

Friedel-Crafts acylations on N-phenylsulfonylpyrrole hav
ing masked acyl group11 at C3-position in order to obtain 2,4- 
diacylpyrroles also have been studied extensively, but aryl- 
sulfonylation on 2,5-disubstituted pyrrole has not been 
reported yet. We have been investigating to prepare new pyr
roles having symmetric and unsymmetric substituents on
3.4- position by manipulating 2,5-dimethylpyrrole with phe
nylsulfonyl chloride, but 1,3-disulfopyrrole was obtained 
unexpectedly.

Direct Friedel-Crafts acylation on 2,5-dimethylpyrrole also 
gives 3,4-symmetric acyl compounds, but normally the yield 
is very low (<5%) when no electron withdrawing groups are 
on the substituted pyrroles.12 So we tried to introduce phe
nylsulfonyl group on N1-position using phenylsulfonyl chlo
ride as us니al. Expecting 1 -phenylsulibnyl-2,5 -dimethylpyrrole,
2.5- dimethylpyrrole 1 was reacted with phenylsulfonyl chlo
ride, tetrabutylammonium hydrogensulfate as a phase trans
fer catalyst, and 50% sodium hydroxide solution in dichloro

Scheme 1. (a) n-Bu4NHSO4, 50% NaOH,軍弘 0 oC to 40 oC, 20 h.

Figure 1. X-ray structure of 1 -phenylsulfbnyl-3-phenylsulfinyl- 
2,5-dimethylpyrrole 4.

methane as described in the literature procedure.10 However, 
1,3-disubstituted product 4 was obtained unexpectedly instead 
of N1 -phenylsulfonyl pyrrole 2 (Scheme 1). The product, 
however was confirmed to lack one oxygen by Mass spec
trum, that can not tell which sulfur loses one oxygen. An
other possible compound 5 could be obtained, but the struc
ture was confirmed as 1-phenylsulfonyl-3-phenylsulfinyl-
2,5-dimethylpyrrole 13 4 by X-ray crystallography (Figure 1).

Formation of disubstituted pyrrole, can not be avoided in 
any reaction conditions. It might be due to relatively stron
ger electron donating power of 2,5-dimethylpyrrole than 
normal pyrrole, and spontaneously gives an extra substitu
tion. Because the mono-sulfonated compound 2, 1-phenyl- 
sulfonyl-2,5-dimethylpyrrole, can not be obtained in this 
reaction condition, it is not clear whether the phenylsulfonyl 
group on C1-position migrates to C3-position or the second 
molecule of phenylsulfonyl chloride attacks the C3-position 
directly.

In order to confirm disubstituted pyrrole, the compound 4 
was further oxidized with OXONE® and tetrabutylammo
nium hydrogensulfate in dichloromethane at room tempera
ture for overnight to give 1,3-diphenylsulfonyl-2,5-dimethyl- 
pyrrole 3 quantitatively14 (Scheme 2), which showed very 
stable in standing at normal condition. The crystal structure 
of this product also can be determined by X-ray crystallogra
phy (Figure 2). These sulfo-compounds can be used as 
important intermediates for preparation of symmetric and
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Scheme 2

Figure 2. X-ray structure of 1,3-diphenylsulf0nyl-2,5-dimethyl- 
pyrrole 3.

unsymmetric pyrroles as well as for the synthesis of substi
tuted peripheral porphyrins.
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