Preparation, Structure, and Property of $\operatorname{Re}\left(\mathrm{NAr}^{(}\right)\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Cl}_{3}$, $\left(\mathrm{PR}_{3}=\mathrm{PMe}_{3}, \mathrm{PEt}_{3}, \mathrm{P}(\mathrm{OMe})_{3} ; \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathbf{2 , 6}-i-\mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)$

Byung-Gyu Park, Nam-Sun Choi, and Soon W. Lee*
Department of Chemistry: Sunghumkwan University, Natural Science Campus, Suwon $440-746$, Korea Received September 16, 1998

Abstract

Several bisphosphine- and bisphosphite-substituted Re-imido complexes have been prepared from Re(NPh) $\left(\mathrm{PPh}_{5}\right)_{2} \mathrm{Cl}_{3}, \mathbf{1}$, and $\mathrm{Re}\left(\mathrm{N}_{-} \mathrm{C}_{6} \mathrm{H}_{3}-i-\mathrm{Pr}_{2}\right)_{2} \mathrm{Cl},(\mathrm{py})$, 4. Compound $\mathbf{1}$ reacted with trimethyl phosphite ($\mathrm{P}_{(}(\mathrm{OMe})_{3}$) to give a mixture of two isomers, mer, trans- $\mathrm{Re}(\mathrm{NPh})\left(\mathrm{P}(\mathrm{OMe})_{2}\right) \mathrm{Cl}_{2}$, 2, and $f a c, c i s-\mathrm{Re}(\mathrm{NPh})(\mathrm{P}(\mathrm{OMe}))_{2} \mathrm{Cl}_{5}$, 2a. In this reaction, the mer,trans-isomer is a major product. Complex 1 also reacted with triethylphosphine (PFt) to exclusively give mer,trans-Re(NPh)(PEt))Cls. 3. Compound 4 reacted with trimethylphosphine (PMe) to give mer, irans $-\mathrm{Re}\left(\mathrm{N}_{-} \mathrm{C}_{6} \mathrm{H}_{3}-i-\mathrm{Pr}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}_{3}$, 5 , which was converted to mer- $\mathrm{Re}\left(\mathrm{N}_{-} \mathrm{C}_{6} \mathrm{H}_{5}-i-\mathrm{Pr}_{2}\right)(\mathrm{PMe})\left(\mathrm{OPMe}_{3}\right)\left(\mathrm{Cl}_{5}, 6\right.$. on exposure to air. Crystallographic data for 2: monoclinic space group $P 2, m, a=8.870(2) \AA, b=14.393(3) \AA$. $c=17.114(4) \AA, \beta=101.43(2)^{\circ}, \chi=4, R\left(w R_{2}\right)=0.0521(0.1293)$. Crystallographic data for 5 : orthorhombic space group $\mathrm{P}_{2} 2_{12} 2_{1}, a=11.307(1) \AA, b=11.802(1) \AA, c=19.193(2) \AA, Z=4, R\left(w R_{2}\right)=0.0250(0.0593)$. Crystallographic data for 6: orthorhombic space group $P 2_{12} 2_{2}, a=14.036(4) \AA, b=16.486(5) \AA, c=11.397(3) \AA$. $Z=4, R\left(w R_{2}\right)=0.0261(0.0630)$.

Introduction

Iransition-metal imido complexes have been of continuous interest. ${ }^{1-6}$ Three general types of imido complexes are now known. ${ }^{1}$ although Cundari's theoretical studies led to a conclusion that a minimum of eight resonance structures are required to describe the metal imido linkage. ${ }^{7}$ The imido ligand can be considered to bond to a transition metal with one σ and either one or two π bonds. Limiting valence bond descriptions of this interaction are shown below.

Structure \mathbf{A} depicts an $s p^{2}$-hybridized nitrogen leading to an $\mathrm{M}=\mathrm{N}$ double bond ($1 \sigma, 1 \pi$) and a bent $\mathrm{M}-\mathrm{N}-\mathrm{R}$ linkage with the lone pair in an $\mathrm{N}\left(s p^{2}\right)$ hybrid orbital. In the closedshell formalism, the imido dianion $[\mathrm{NR}]^{2-}$ in \mathbf{A} acts as a fourelectron donor. Some zero-valent metals (Cr, W) are known to possess a bent imido ligand (A) ${ }^{8.9}$ In addition, bent imido species with a formal M-N double bond are known to be more reactive than linear ones, because nucleophilic reactivity is enhanced in the bent NR ligand. ${ }^{16-16)}$ Structure B depicts an $s p$-hybridized nitrogen with the lone pair in an $\mathrm{N}(p)$ atomic orbital that does not participate in the $s p$ hybridization. In \mathbf{B}, the $\mathrm{M}=\mathrm{N}$ double bond ($1 \sigma, \mid \pi$) is maintained if symmetry restrictions or an energy mismatch with available metal orbitals does not allow donation of the lone pair on the nitrogen atom to the metal. $\ln \mathbf{B}$, the imido ligand acts as a

[^0]formal four-electron donor. The more common complexes of metals in a high oxidation state have a linear imido ligand (C). Structure \mathbf{C} depicts an $s p$-hybridized nitrogen leading to an $\mathrm{M} \equiv \mathrm{N}$ triple bond ($1 \sigma, 2 \pi$) and a linear $\mathrm{M}-\mathrm{N}-\mathrm{R}$ linkage. where the nitrogen lone pair $p(\pi)$ to $\mathrm{M}\left(d_{\pi}\right)$ donation is very effective. In \mathbf{C}, the imido liagnd acts as a formal six-electron donor. Wigley pointed out that in cases where multiple π donor ligands are present in the molecule, a molecular orbital approach is required to accurately describe imido bonding.'

Recently we have prepared several Re-imido complexes of the type $\operatorname{Re}\left(\mathrm{NPh}_{3}\right) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3}\right) \mathrm{L}$ or $\mathrm{Re}\left(\mathrm{NPh}^{2}\right) \mathrm{Cl}_{3} \mathrm{~L}_{2}$ from the reactions of $\operatorname{Re}\left(\mathrm{NPh}^{2}\right)\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{3}$ with small, strongly coordinating ligands ($\mathrm{L}=\mathrm{CO}, \mathrm{P}(\mathrm{OMe})_{5} \cdot \mathrm{PMe}_{3}$) (eq I and 2). ${ }^{17-19}$ Because of our continuous interest in the complexes of this type, we tried to prepare other bisphosphine- and bisphos-phite-substituted Re-imido complexes. Herein we report preparation, structure, and some properties of $\mathrm{Re}(\mathrm{NAr})\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Cl}_{3}$ $\left(\mathrm{PR}_{3}=\mathrm{PMe}_{5}, \mathrm{PEt}_{5,}, \mathrm{P}(\mathrm{OMe})_{3} ; \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, 2,6-i-\mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)$.

Experimental Section

Unless otherwise stated, all the reactions have been performed with standard Schlenk line and cannula techniques under an argon atmosphere. Air-sensitive solids were manip-
ulated in a glove box filled with argon. Glassware was soaked in KOH -saturated 2-propanol for $c a .24 \mathrm{~h}$ and washed with distilled water and acetone before use. Glassware was cillher flame-dricd or oven-dried. Hydrocarbon solvents were stirred over concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ for $c a .48 \mathrm{~h}$. neutralized with $\mathrm{K}_{2} \mathrm{CO}_{3}$. stirred over sodium metal. and distilled by vacuum transfer. Benzene. dielhyl ether. toluenc. and tetrahy drofuran (THF) were stirred over sodium metal and distilled by vacuum transfer. NMR solvent (CDCl_{3}) was degassed by frecer-pump-haw cycles before use and stored over molecular sieves under argon. 2.6-Diisopropylaniline $\left(\mathrm{H}_{2} \mathrm{~N}_{-1} \mathrm{C}_{6} \mathrm{H}_{3}-2.6-i-\mathrm{Pr}_{2}\right)$ was distilled over $\mathrm{CaH}_{2} . \mathrm{CO}(99.9 \%)$ was purchased from Union Gas company and use as received. Re metal. trimechy 1 phosphine ($\mathrm{PMc}_{3} .1 \mathrm{M}$ in tolucne). trimethyl phosphite ($\mathrm{P}\left(\mathrm{OMc}\right.$)) , tricthylphosphine (PEt_{3}. I M in THF). tripheny lphosphine (PPh_{3}). sodium cyclopentadicny lide (NaCp : $\mathrm{Cp}=\mathrm{C}_{5} \mathrm{H}_{5} .2 \mathrm{M}$ in THF). thallium cyclopentadienylide (TICp). sodium pentamedhylcyclopentadieny lide ($\mathrm{NaCp}{ }^{*}: \mathrm{Cp}^{*}=\mathrm{C}_{j} \mathrm{Mc} \mathrm{c}_{5} .0 .5 \mathrm{M}$ in THF). LiBE1 ${ }_{3} \mathrm{H}$. and $\mathrm{LiBE} 1_{3} \mathrm{D}$ were purchased from Aldrich company and used as
 (py) $4.1 .2=$ were prepared by the literature methods.
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}-\mathrm{NMR}$ spectra were recorded with a Bruker AMX $500 \mathrm{MH} \%$ spectrometer wilh reference to internal solvent resonances and reported relative to tetramethylsilanc. ${ }^{31} \mathrm{P}\{\mathrm{H}$ [H -NMR spectra were also recorded with a Bruker AMX $500 \mathrm{MH} \%$ spectrometer with reference to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. IR spectra were recorded with a Nicolet 205 FTIR spectrophotometer. Melting points were measured with a Thomas Hoover capillary melling point apparatus wilhout calibration. Elemental analy ses were performed by the Korea Basic Science Center.
Preparation of $\mathrm{Re}(\mathbf{N P h})\left(\mathbf{P}\left(\mathrm{OMc}_{3}\right)_{2} \mathrm{Cl}_{3}, 2\right.$ and 2a. Heating (30 min) $2.0 \mathrm{~g}(2.2 \mathrm{mmol})$ of $\mathbf{1}$ wilh 1.10 mL of $\mathrm{P}(\mathrm{OMc})_{3}$ (9.2 mmol) under reflux in bentene (60 mL) gave a grecn solution. and then the solvent was removed under yacuum to give green gummy solids. The resulting solids were washed with diechyl echer ($2 \times 25 \mathrm{~mL}$) and then dried under vacuum to give 1.09 g ($1.90 \mathrm{mmol} .87 \%$) of a mixture of isomers. mer,trams- $\mathrm{Re}(\mathrm{NPh})\left(\mathrm{P}(\mathrm{OMe})_{;}\right) \mathrm{Cl}_{3}$. 2. and $f a c, c i s-\mathrm{Re}(\mathrm{NPh})-$ $\left.\left(\mathrm{P}(\mathrm{OMe})_{3}\right)\right)_{2} \mathrm{Cl}_{3}$. 2a. This product mixture conveniently recrystallized from acetone-hexane. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 7.804-$ 7.277 ($5 \mathrm{H} . \mathrm{m}$. phenyl). 3.954 (18H. t. $J_{\mathrm{P} \cdot \mathrm{II}}=5.3 \mathrm{~Hz} . \mathrm{P}(\mathrm{OMe})_{3}$ for 2 a$) .3 .879$ (18 H. d. $^{2} J_{\mathrm{P} \cdot \mathrm{II}}=10.6 \mathrm{~Hz} . \mathrm{P}(\mathrm{OMe})$; for 2$)$. $\left.{ }^{13} \mathrm{C} \xi^{\prime} \mathrm{H}\right)$-NMR (CDCl_{3}): δ 130.2-124.1 (phenyl), 54.4 (t. $\mathrm{J}_{\text {P.C }}$ $=5+4 \mathrm{~Hz}$ for 2). 50.9 (d. $J_{\mathrm{P}-\mathrm{C}}=80.5$ for 2a). ${ }^{31} \mathrm{P}\left\{{ }^{\prime} \mathrm{H} ;\right.$ NMR (CDCl_{3}): $\delta 81.7$ (2a). 72.1 (2). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{3}-\mathrm{NO}_{6}-\mathrm{PaCl}_{2} \mathrm{Re}$: C. 22.81: H. 3.67: N. 2.22. Found: C. 23.12: H. 3.97: N. $1.87 . \mathrm{Mp}$ (decomp.): $126-128^{\circ} \mathrm{C}$. IR (KBr): 2955, 1178. 1050, 1024. 807.779. 767. 750. 684. 527 cm ${ }^{1}$.

Preparation of mer, trans- $\mathrm{Re}(\mathbf{N P h})\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}_{3}$, 3. Heating $(4 \mathrm{~h}) 0.80 \mathrm{~g}(0.88 \mathrm{mmol})$ of $\mathbf{1}$ with $2.0 \mathrm{~mL}(2.0 \mathrm{mmol})$ of PEt $_{3}(1 \mathrm{M}$ in THF) under reflux in benzene (60 mL) gave a light green solution. and then the solvent was removed under vacum to give green solids. The resulting solids were washed with hevane ($3 \times 25 \mathrm{~mL}$) and then dried under vac-
uum to give $0.45 \mathrm{~g}(0.73 \mathrm{mmol} .83 \%)$ of 3 . This product conveniently recrystallized from benzenc-hexanc. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.738-7.263(5 \mathrm{H} . \mathrm{m}$. phenyl). $2.210(12 \mathrm{H} . \mathrm{m}$. $\mathrm{PCH}_{2} \mathrm{CH}_{3}$) 1.163 ($18 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H} ;\right.$-NMR $\left(\mathrm{CDCl}_{3}\right): \delta 130.2-119.8$ (pheny1). $14.8\left(\mathrm{t} . \mathrm{J}_{\mathrm{PC}}=14.3 \mathrm{H} \%\right.$ $\mathrm{PCH}_{2} \mathrm{CH}_{3}$). 7.4 (s. $\mathrm{PCH}_{2} \mathrm{CH}_{3}$). ${ }^{31} \mathrm{P}^{\prime}{ }^{\prime} \mathrm{H} ;$-NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ -23.3 (s). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NP}_{2} \mathrm{Cl}_{3} \mathrm{Re}$: C. 34.87 : H. 5.69: N. 2.26. Found: C. 35.38: H. 5.76: N. 2.02. Mp (decomp.): 117-119 ${ }^{\circ} \mathrm{C}, \mathrm{IR}(\mathrm{KBr}): 2970.2935 .2907 .1475$. 1455. 1420, 1259, 1162, 780, 762, 732. $716,691 \mathrm{~cm}^{-1}$.

Preparation of mer, trans- $\mathbf{R e}\left(\mathbf{N}-\mathrm{C}_{6} \mathbf{H}_{3}-i-\mathrm{Pr}_{2}\right)\left(\mathbf{P M e}_{3}\right)_{2} \mathrm{Cl}_{3}$, 5. To an opaque. dark green solution of benzenc (60 mL) containing $0.35 \mathrm{~g}(0.48 \mathrm{mmol})$ of 4 was added $2.0 \mathrm{~mL}(2.0$ mmol) of PMc_{3} (M in tolucne). The resulting solution was allowed to stir for 12 h at room temperature. and then filtered. The solvent was removed under vacuum to give yellowish green solids. The resulting solids were washed with pentanc ($2 \times 25 \mathrm{~mL}$) and then dricd under vacuum to give $0.16 \mathrm{~g}(0.26 \mathrm{mmol} .54 \%)$ of 5 . This product mixture conseniently recrystallized from beneenc-pentanc. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.647-7.069(3 \mathrm{H} . \mathrm{m}$. phenyl). $3.917(2 \mathrm{H} . \mathrm{m}$.
 $\left.J=6.8 \mathrm{H} \neq \mathrm{CHMe})_{2}\right){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 152.2-125.2$ (phenyl). $28.1\left(\mathrm{CHMc}_{2}\right) .24 .3\left(\mathrm{CHM} e_{2}\right) .12 .8\left(\mathrm{t} . J_{\mathrm{P} . \mathrm{C}}=16.8\right.$ $\left.\mathrm{H} \neq \mathrm{PMe})_{3}\right) \cdot{ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-40.7$ (s). Anal. Calcd For $\mathrm{C}_{13} \mathrm{H}_{3} \mathrm{NPP}_{2} \mathrm{Cl}_{3} \mathrm{Rc}: \mathrm{C} .34 .87$: H. 5.6): N. 2.26. Found: C. 34.94: H. 5.75: N. 1.83. Mp (decomp.): 207-2099 ${ }^{\circ} \mathrm{C} . \mathrm{IR}$ (KBr): 2955. 2912. 2867. 1587, 1414, 1359. 1284, 954, 856. $804.762 .745 .675 \mathrm{~cm}^{-1}$.
 6. When the solution of beneenc-pentane containing 5 was allowed to be in contact with air for 72 h . 5 slowly transformed to 6. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.583-7.026(3 \mathrm{H} . \mathrm{m}$. phenyl). $3.926\left(2 \mathrm{H} . \mathrm{m} . \mathrm{CHMc}_{2}\right) .1 .709\left(9 \mathrm{H} . \mathrm{d}^{2} . J_{\text {PII }}=13.0 \mathrm{~Hz}\right.$.
 $\left.J=6.8 \mathrm{H} \neq \mathrm{CHMe})_{2}\right) \cdot{ }^{19} \mathrm{C}\left\{{ }^{〔} \mathrm{H}_{3}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 140.1-124.7\right.$ (phenyl). $\left.28.1\left(\mathrm{CHMc}_{3}\right) .24 .3(\mathrm{CHMe})_{2}\right) .16 .4\left(\mathrm{~d} . \mathrm{J}_{\mathrm{P}-\mathrm{C}}=71.1\right.$ $\mathrm{H} \not \ldots \mathrm{OPMe}_{3}$). 15.3 (d. $\left.\mathrm{J}_{\mathrm{PC}}=35.5 \mathrm{~Hz} . \mathrm{PMe}\right)_{3}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H} ;-\mathrm{NMR}\right.$ $\left(\mathrm{CDCl}_{3}\right): \delta 65.3\left(\mathrm{~d} . J_{\mathrm{P}-\mathrm{P}}=8.5 \mathrm{~Hz} . \mathrm{O}^{\prime} \mathrm{Mc}_{3}\right) .-39.5\left(\mathrm{~d} . J_{\mathrm{P}-\mathrm{P}}\right.$ $=8.5 \mathrm{~Hz} . P \mathrm{Me}_{3}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{3} \mathrm{NOP}_{2} \mathrm{Cl}_{3} \mathrm{Re}: \mathrm{C}$. 33.99: H. 5.55 : N. 2.20. Found: C. 33.91: H. 5.78: N. 1.94 Mp (decomp.): 127-129 ${ }^{\circ} \mathrm{C}$. IR (KBr): 2965. 2925. 2869. 1461. 1435. 1362. 1295. $1107(\mathrm{P}=\mathrm{O})$, 1004, 957. $866.756 .679 \mathrm{~cm}^{1}$.

X-ray Structure Determination. All X-ray data were collected with use of either an Euraf-Nonius CAD4 diffractometer (for $\mathbf{2}$ and 6) or an Mac Sciences MXC diffractometer (for 5). both of which are equipped with an Mo X-ray tube and a graphite crystal monochromator. Details on crystal data and intensity data are given in Table 1. The orientation matrix and unit cell parameters were determined by least-squares analyses of the setting angles of 25 reflections in the range $20.0^{\prime \prime}<2 \theta<30.0^{\circ}$. Three check reflections were measured every 100 reflections throughout data collection and showed no siguificant variations in intensity. Intensity data were corrected for Lorenz and polarization effects. Decay corrections were also made. The intensity data were empirically corrected with ψ-scan data. All calculations were

Table 1. X-ray data collection and structure retinement

	2	5	6
¢ommula	$\begin{gathered} \mathrm{C}_{\mathrm{H}} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{H}_{2-} \\ \mathrm{Cl}_{3} \mathrm{Re} \end{gathered}$	$\begin{gathered} \mathrm{C}_{18} \mathrm{I}_{35} \mathrm{NP}_{V^{-}} \\ \mathrm{Cl}_{3 \mathrm{Ke}} \end{gathered}$	$\overline{\mathrm{C}_{18} \mathrm{H}_{3}: \mathrm{NOP}_{2^{-}}}$ Cl Re
In	631.80	619.96	635.96
lemperature, K	293	293	293
crystal system	monoclinic	orthorlombic	orthorhombic
space group	$\mathrm{P} 2_{1} / \mathrm{n}$	$P 2_{1} 2_{1} 2_{1}$	$P 22_{1} 2_{1}$
a, λ	8.870(2)	$11.307(1)$	$14.036(4)$
b, A	$14.393(3)$	$11.802(1)$	$16.486(5)$
c, \AA	17.114(4)	19.193(2)	$11.397(3)$
β, deg	101.43(2)		
$\mathrm{V}, \mathrm{N}^{3}$	$2141.5(8)$	2561.2(4)	2637(1)
7.	4	4	4
$d_{\text {cul }}{ }^{\text {¢ }} \mathrm{cm}^{\text {cm- }}$	1.960	1.608	1.602
μ, mm^{-1}	6.224	5.185	5.041
F(000)	1224	1224	1256
No. of mique relns	3552	2472	2058
No. of reths with $\mathrm{I}>2$ (f)) 3355	2428	2030
No. of params retined	227	226	2.36
2θ range (")	3-50)	4-50)	3-50)
scan lype	$\omega-2 \theta$	$\omega-2 \theta$	(0-2 θ
Max in $\Delta p\left(0 A^{-3}\right)$	0.98	0.88	0.98
COF on 1^{2}	1.086	1.046	1.008
R	0.0521	0.0250	0.0261
M $R_{2}{ }^{\text {a }}$	0.1293	0.0593	0.0630

carried out with use of the SHELXS-86 and SHELXL-93 programs. ${ }^{23.2+4}$

A light green crystal of 2 . shaped as a block. of approximate dimensions $0.3 \times 0.3 \times 0.4 \mathrm{~mm}^{3}$. was used for crystal and intensity data collection. The unit cell parameters and systematic absences. $h 0 /(h+l=2 n+1)$ and $0 k 0(k=2 n+$ 1). unambiguously indicated $P 2_{1} / n$ as a space group. The structure was solved by the heary atom method. All nonhydrogen atoms were refined anisotropically: All hydrogen atoms were generated in idealized positions and refined using a riding model.

A green crystal of 5 . shaped as a block of approximate dimensions $0.2 \times 0.3 \times 0.5 \mathrm{~mm}^{3}$. was used for crystal and intensity data collection. The unit cell parameters and systematic absences. $h 00(h=2 n+1) .0 k 0(k=2 n+1)$. and $00 /$ $(l=2 n+1)$. unambiguously indicated $P 2_{2} 2_{2} 2_{l}$ as a space group. The structure was solved by the heavy atom method. Five (C13-C17) out of six carbon atoms in the two trimethylphospline ligands exhibited a structural disorder and the best fit was obtained by considering the carbon atoms to be distributed orer two positions with the site occupation factors of $0.54: 0.46$ (C13-C17: C13A-C17A). The other nonhydrogen atoms were refined anisotropically. All hydrogen atoms were generated in idealized positions and refined using a riding model.

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{3} \times 10^{3}\right)$ for 2

	S	!	\angle	L($\left.\left.\mathrm{c}_{\text {c }}\right)^{\prime}\right)^{\prime}$
Re	222(1)	$1151(1)$	2490 (1)	27(1)
$\mathrm{Cl}(1)$	-1447(2)	$74042)$	3390 (1)	$45(1)$
$\mathrm{Cl}(2)$	289(3)	2676(1)	3102(1)	$45(1)$
$\mathrm{Cl}(3)$	$29(3)$	-48(1)	2067(1)	48(1)
$\mathrm{P}(1)$	2455(2)	$73011)$	3522(1)	$3+(1)$
P (2)	-2117(2)	1495 (1)	1525(1)	$3+(1)$
O(1)	$3403(7)$	-69(5)	3232(4)	$55(2)$
$\bigcirc(2)$	2143(7)	3204 (4)	4342(3)	47(1)
$O(3)$	3658(7)	1521(4)	3869(3)	$51(2)$
O(4)	-3741(8)	1124(4)	1631(4)	$50(2)$
$0(5)$	-1837(8)	1168(4)	692(3)	48(2)
O(6)	-2518(7)	2558(4)	136043)	48(1)
N	1237(7)	1489(4)	1779(3)	$31(1)$
C(1)	1862(8)	1745 (5)	1142(4)	$33(2)$
C (2)	1760(13)	1123 (6)	$505(5)$	53(2)
C(3)	2298(13)	$1405(8)$	$-155(6)$	$63(3)$
C(4)	2925(12)	2261(10)	-188(6)	$73(3)$
$C(5)$	3019 (11)	2880(7)	429(7)	62(3)
C(6)	$2511(10)$	2626(6)	$1124(5)$	47(2)
C(11)	4830(11)	-408(8)	3708(7)	69 (3)
C(12)	1695 (14)	$909(7)$	4927(5)	$59(3)$
C(13)	4305 (12)	$2101(8)$	$3326(7)$	75 (3)
$C(21)$	-100(14)	15077	1704(7)	$67(3)$
$\mathrm{C}(22)$	-2856(15)	$1409(8)$	-51(6)	$78(4)$
$\mathrm{C}(2.3)$	-3240(11)	$3089(6)$	$1000(5)$	53(2)

Equivalent isotropic l defined as one third of the trace of the orthogonalized $l_{i j}$ tensor.

A green crystal of 6 . shaped as a block. of approximate dimensions $0.3 \times 0.4 \times 0.4 \mathrm{~mm}^{3}$. was used for crystal and intensity data collection. The wnit cell parameters and systematic absences, $h 00(h=2 n+1), 0 k 0(k=2 n+1)$, and $00 /$ $(l=2 n+1)$. unambiguously indicated $P 2_{2} 2_{2} \|_{\text {I }}$ as a space group. The structure was solved by the heasy atom method. All non-hydrogen atoms were refined anisotropically: All hydrogen atoms were generated in idealized positions and refined using a riding model.

Final atomic positional parameters for non-hydrogen atoms for are shown in Tables 2-4. The selected bond distances and bond angles are shown in Tables 5 and 6.

Results and Discussion

Preparation. Compound 1 reacts with $\mathrm{P}(\mathrm{OMe})_{3}$ in a refluxing benzene to give a mixture of two isomers, mer, irans$\operatorname{Re}(\mathrm{NPh})\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2} \mathrm{Cl}_{3} \mathbf{2}^{2}$ and $/ \alpha c ; c i s-\mathrm{Re}(\mathrm{NPh})\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2} \mathrm{Cl}_{3}$. 2a. approximately in a ratio of $9: 1$ on the basis of ${ }^{1} \mathrm{H} N \mathrm{NR}$ peak intensities (eq 3). This reaction is therefore more stereoselective, compared to that employed for preparation of a PMe_{3} analogue, in which the corresponding product ration is

Table 3. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{3} \times 10^{3}\right)$ for 5

	x	y	$\%$	$\mathrm{U}(\mathrm{eq})^{\mathrm{a}}$
Re	$1510(1)$	$636(1)$	$8759(1)$	$35(1)$
$\mathrm{Cl}(1)$	$424(2)$	$2426(2)$	$8729(2)$	$64(1)$
$\mathrm{Cl}(2)$	$231(3)$	$287(2)$	$9731(2)$	$81(1)$
$\mathrm{Cl}(3)$	$2518(3)$	$1438(2)$	$7771(1)$	$65(1)$
$\mathrm{P}(1)$	$2878(2)$	$1690(2)$	$9495(1)$	$58(1)$
$\mathrm{l}(2)$	$-76(3)$	$-55(3)$	$8008(2)$	$74(1)$
$\mathrm{N}(1)$	$2252(5)$	$-636(5)$	$8792(3)$	$35(1)$
$\mathrm{C}(1)$	$2827(6)$	$-1690(6)$	$8795(4)$	$38(2)$
$\mathrm{C}(2)$	$3727(7)$	$-1896(7)$	$8306(4)$	$45(2)$
$\mathrm{C}(3)$	$4239(9)$	$-2977(9)$	$8311(5)$	$58(3)$
$\mathrm{C}(4)$	$3944(9)$	$-3766(8)$	$8789(6)$	$63(2)$
$\mathrm{C}(5)$	$3085(10)$	$-3548(8)$	$9279(6)$	$62(3)$
$\mathrm{C}(6)$	$2506(8)$	$-2508(7)$	$9291(5)$	$49(2)$
$\mathrm{C}(7)$	$4119(9)$	$-1043(9)$	$7787(5)$	$62(3)$
$\mathrm{C}(8)$	$5463(10)$	$-830(9)$	$7832(6)$	$77(3)$
$\mathrm{C}(9)$	$3746(14)$	$-1338(14)$	$7059(6)$	$115(5)$
$\mathrm{C}(10)$	$1618(10)$	$-2281(8)$	$9866(5)$	$62(3)$
$\mathrm{C}(11)$	$755(10)$	$-3256(11)$	$9956(7)$	$94(4)$
$\mathrm{C}(12)$	$2224(13)$	$-2036(16)$	$10542(6)$	$121(6)$
$\mathrm{C}(13)$	$2372(29)$	$2404(27)$	$10251(14)$	$93(9)$
$\mathrm{C}(14)$	$3565(32)$	$2961(31)$	$9040(17)$	$115(11)$
$\mathrm{C}(15)$	$4133(28)$	$809(27)$	$9725(16)$	$96(9)$
$\mathrm{C}(13 \mathrm{~A})$	$2512(21)$	$1723(20)$	$10412(11)$	$81(6)$
$\mathrm{C}(14 \mathrm{~A})$	$2986(27)$	$3184(24)$	$9307(14)$	$102(8)$
$\mathrm{C}(15 A)$	$4333(22)$	$1233(23)$	$9418(13)$	$91(7)$
$\mathrm{C}(16)$	$349(22)$	$134(20)$	$7001(11)$	$53(5)$
$\mathrm{C}(17)$	$-1607(28)$	$195(28)$	$8471(16)$	$102(9)$
$\mathrm{C}(16 \mathrm{~A})$	$-181(22)$	$221(21)$	$7157(11)$	$80(6)$
$\mathrm{C}(17 \mathrm{~A})$	$-1468(21)$	$598(19)$	$8058(12)$	$89(6)$
$\mathrm{C}(18)$	$-226(14)$	$-1568(12)$	$8092(7)$	$98(4)$

Equivalent isotropic ℓ defined as one third of the trace of the orthogonalized tis tensor.
4.6:1. ${ }^{19}$ Several attempts to separate 2a from the product mixture have not been successful. This mixture, however, has crystallized only in the mertrans $-\mathrm{Re}(\mathrm{NPh})\left(\mathrm{P}\left(\mathrm{OMe}_{3}\right)_{2} \mathrm{Cl}_{3}\right.$ (2). Variable-temperature ($20,30,40,50^{\circ} \mathrm{C}$ in $\left.\left.\mathrm{CDCl}_{3}\right)^{1}\right][-$ NMR spectra of 2 show that the intensity ratio of $9: 1$ remains intact and there is almost no change in chemical shills of $\mathrm{P}(\mathrm{OMc})_{3}$ protons.

In 'll NMR spectra, methyl protons of $\mathrm{P}(\mathrm{OMe})$: in 2 exhibit a sharp triplet at $\delta 3.954$, analogous to the PMe_{3} analogue, ${ }^{19}$ because of their virtual coupling to the two strongly

Table 4. Atomic coordinates ($\times 10^{+}$) and equivalent isotropic displacement parameters $\left(\AA^{3} \times 10^{2}\right)$ for 6

	x	y	\%	(teq) ${ }^{\text {a }}$
Re	548(1)	1243(1)	8373 (1)	40(1)
$\mathrm{Cl}(1)$	1014(2)	-178(2)	$8570(3)$	$68(1)$
$\mathrm{Cl}(2)$	-784(2)	785(2)	7230(3)	$68(1)$
$\mathrm{Cl}(3)$	2093(2)	1630(2)	$9118(3)$	63(1)
$1^{3}(1)$	153(2)	2586(2)	$7744(2)$	$49(1)$
$1^{\prime}(2)$	1958(2)	$848(2)$	594692)	56 (1)
$\bigcirc(2)$	1247(5)	1220(4)	6763(5)	$62(2)$
$\mathrm{N}(1)$	12(5)	1322(4)	$9687(6)$	47(2)
$\mathrm{C}(1)$	-389(6)	1334(6)	10826(7)	$51(2)$
C(2)	-108(7)	1913(7)	11651(9)	$6043)$
$C(3)$	-464(11)	1831(10)	12769(11)	105(5)
C(4)	-1095(13)	1216(11)	13061(12)	138(7)
C(5)	-1400(11)	679(10)	12230(11)	106(5)
C(6)	-1061(8)	704(7)	11107(9)	63(3)
C(7)	-1417(8)	126(7)	10179(11)	67(3)
$\mathrm{C}(8)$	-2426(12)	386(9)	9807(17)	121(6)
((9)	-1500(12)	-729(8)	10606(14)	108(5)
C(10)	$544(8)$	2593(7)	$11338(9)$	$67(3)$
C(11)	$69(1)$	3446(7)	11534(12)	92(4)
C(12)	1462(8)	2545(9)	12049(13)	93(4)
C(13)	-963(9)	2923(7)	8354(13)	87(4)
C(14)	983(10)	3384(7)	8053(14)	94(4)
C(15)	-40(11)	2662(7)	6170)(10)	82(4)
C(16)	2860(9)	$268(9)$	$6586(13)$	104(5)
C(17)	1351(12)	194(10)	$5003(16)$	136(7)
C(18)	2488(14)	1612(9)	5085(17)	161(10)

「:quivalent isotropic f defined as one third of the trace of the orthogonalized U_{i}, tensor.
coupled trans phosphorus nuclei $\left(J_{\mathrm{P}-\mathrm{H}}-5.3 \mathrm{~Hz}\right) .^{25}{ }^{1} \mathrm{H}$ NMR spectra of $2 \mathbf{a}$ show a sharp doublet at $\delta 3.879\left(J_{\text {P. H }}-10.6\right.$ HL), which indicates a cis-orientation of the two $\mathrm{P}(\mathrm{OMe})_{3}$ ligands.

Compound 1 also reacts with PEt_{3} in a refluxing benzene to exclusively give mer,trans- $\mathrm{Re}(\mathrm{NPh})\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}_{3,} \mathbf{3}$ in 83% yield (eq 4). $\left.{ }^{1:} \mathrm{C}\left\{{ }^{\prime} \mathrm{I}\right]\right\}$-NMR spectra of 3 exhibit a triplet at δ $14.8\left(J_{p-c}-14.3 \mathrm{lzz}\right)$, owing to the virtual coupling of the carbon nucleus to the two trans phosphorus nuclei. ${ }^{25-31}$ $\left.P^{1}{ }^{1}\right][\}-N M R$ spectra of 3 exhibit a singlet at $\delta-23.3$ as expected. The NMR data mentioned above indicate that the 1wo PEts ligands are placed trans to each other in 3.

Compound 4 reacts with PMe; in benzene at room temperature to give mer,trans- $\mathrm{Re}\left(\mathrm{N}_{-}-\mathrm{C}_{6} \mathrm{I}_{3}-i-\mathrm{Pr}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}_{3}, 5$, in moderate yield (eq 5). The Re metal has been formally

Table 5. Selected bond distances (A) and bond angles (${ }^{(1)}$ in 2

Re-N	1.721(6)	$\mathrm{Re}-\mathrm{Cl}(3)$	2.408(2)	Re-Cl(1)	2.411(2)
$\mathrm{Re-Cl}(2)$	2.427(2)	Re-P(2)	2.433(2)	Re-P(1)	2.453(2)
$\mathrm{P}(1)$-O(1)	$1.562(6)$	$\mathrm{P}(1)-\mathrm{O}(3)$	$1.593(6)$	$\mathrm{P}(1)-\mathrm{O}(2)$	1.597(5)
$\mathrm{P}^{2}(2)-\mathrm{O}(5)$	$1.567(6)$	$\mathrm{P}^{\mathrm{P}}(2)-\mathrm{O}(4)$	1.58047	$\mathrm{P}(2)-\mathrm{O}(6)$	1.583(5)
N-C(1)	$1.368(9)$				
$\mathrm{N}-\mathrm{Re}-\mathrm{Cl} 3$	94.2(2)	$\mathrm{N}-\mathrm{Rc}-\mathrm{Cll}$	173.72(19)	$\mathrm{Cl} 3-\mathrm{Re}-\mathrm{Cll}$	86.68 (8)
$\mathrm{N}-\mathrm{Rc}-\mathrm{Cl} 2$	94.5(2)	Cl3-Re-Cl2	171.09(7)	$\mathrm{Cl} 1-\mathrm{Re}-\mathrm{Cl} 2$	84.94(8)
$\mathrm{N}-\mathrm{Re}-\mathrm{P} 2$	87.6(2)	C13-Re-P2	89.43(7)	$\mathrm{Cl1}-\mathrm{Re}-\mathrm{P} 2$	86.22(7)
Cl2-Re-122	93.04(7)	N-Re-P'I	$96.8(2)$	Cl3-Re-Pl	88.85(7)
Cll-Re-1'l	$89.45(7)$	C12-Re-P1	$88.03(7)$	P2-Re-1'1	175.44(6)
O1-PI-O3	106.34)	OI-PI-02	101.8(3)	O3-PI-O2	$99.0(3)$
O5-P2-O4	108.4(4)	05-P2-06	101.4(3)	O4-P2-O6	99.7(3)
C1-N-Re	172.4(5)				

Table 6. Selected bond distances (\wedge) and bond angles (${ }^{\circ}$) in 5 and 6

Compound 5		Compound 6	
$\operatorname{Re}(1)-\mathrm{N}(1)$	$1.721(6)$	$\mathrm{Re}(1)-\mathrm{V}(1)$	$1.680(7)$
$\mathrm{Re}(1)-\mathrm{Cl}(1)$	$2.445(2)$	$\mathrm{Re}(1)-\mathrm{Cl}(1)$	$2.443(2)$
$\mathrm{Re}(1)-\mathrm{Cl}(2)$	$2.396(2)$	$\mathrm{Re}(1)-\mathrm{Cl}(2)$	$2.401(3)$
$\mathrm{Re}(1)-\mathrm{Cl}(3)$	$2.406(2)$	$\mathrm{Re}(1)-\mathrm{Cl}(3)$	$2.414(3)$
$\mathrm{Re}(1)-\mathrm{P}(1)$	$2.436(3)$	$\mathrm{Re}(1)-\mathrm{P}(1)$	$2.393(3)$
$\mathrm{Re}(1)-\mathrm{P}(2)$	$2.441(3)$	$\mathrm{Re}(1)-\mathrm{O}(2)$	$2.08116)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.403(9)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.416(11)$
		$\mathrm{P}(2)-\mathrm{O}(2)$	$1.496(6)$

$\mathrm{N}(1)-\mathrm{Re}(1)-\mathrm{Cl}(2)$	$96.6(2)$	$\mathrm{N}(1)-\mathrm{Re}(1)-\mathrm{Cl}(2)$	$99.1(3)$
$\mathrm{N}(1)-\mathrm{Re}(1)-\mathrm{Cl}(3)$	$98.1(2)$	$\mathrm{N}(1)-\mathrm{Re}(1)-\mathrm{Cl}(3)$	$94.0(3)$
$\mathrm{Cl}(2)-\mathrm{Re}(1)-\mathrm{Cl}(3)$	$165.25(8)$	$\mathrm{Cl}(2)-\mathrm{Re}(1)-\mathrm{Cl}(3)$	$166.74(10)$
$\mathrm{N}(1)-\mathrm{Re}(1)-\mathrm{P}(1)$	$96.6(2)$	$\mathrm{N}(1)-\mathrm{Re}(1)-\mathrm{P}(1)$	$95.3(3)$
$\mathrm{Cl}(2)-\mathrm{Re}(1)-\mathrm{P}(1)$	$91.11(11)$	$\mathrm{P}(1)-\mathrm{Re}(1)-\mathrm{Cl}(2)$	$87.02(10)$
$\mathrm{Cl}(3)-\mathrm{Re}(1)-\mathrm{P}(1)$	$87.42(10)$	$\mathrm{P}(1)-\mathrm{Re}(1)-\mathrm{Cl}(3)$	$93.99(10)$
$\mathrm{N}(1)-\mathrm{Re}(1)-\mathrm{P}(2)$	$95.1(2)$	$\mathrm{N}(1)-\mathrm{Re}(1)-\mathrm{O}(2)$	$176.4(3)$
$\mathrm{Cl}(2)-\mathrm{Re}(1)-\mathrm{P}(2)$	$87.69(13)$	$\mathrm{O}(2)-\mathrm{Re}(1)-\mathrm{Cl}(2)$	$83.3(2)$
$\mathrm{Cl}(3)-\mathrm{Re}(1)-\mathrm{P}(2)$	$90.80(11)$	$\mathrm{O}(2)-\mathrm{Re}(1)-\mathrm{Cl}(3)$	$83.8(2)$
$\mathrm{P}(1)-\mathrm{Re}(1)-\mathrm{P}(2)$	$168.36(10)$	$\mathrm{O}(2)-\mathrm{Re}(1)-\mathrm{P}(1)$	$82.08(19)$
$\mathrm{N}(1)-\mathrm{Re}(1)-\mathrm{Cl}(1)$	$178.7(2)$	$\mathrm{N}(1)-\mathrm{Re}(1)-\mathrm{Cl}(1)$	$96.4(3)$
$\mathrm{Cl}(2)-\mathrm{Re}(1)-\mathrm{Cl}(1)$	$82.15(9)$	$\mathrm{Cl}(2)-\mathrm{Re}(1)-\mathrm{Cl}(1)$	$87.49(11)$
$\mathrm{Cl}(3)-\mathrm{Re}(1)-\mathrm{Cl}(1)$	$83.10(9)$	$\mathrm{Cl}(3)-\mathrm{Re}(1)-\mathrm{Cl}(1)$	$88.88(10)$
$\mathrm{P}(1)-\mathrm{Re}(1)-\mathrm{Cl}(1)$	$83.76(9)$	$\mathrm{P}(1)-\mathrm{Re}(1)-\mathrm{Cl}(1)$	$167.73(10)$
$\mathrm{P}(2)-\mathrm{Re}(1)-\mathrm{Cl}(1)$	$84.61(10)$	$\mathrm{O}(2)-\mathrm{Re}(1)-\mathrm{Cl}(1)$	$86.4(2)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Re}(1)$	$177.5(6)$	$\mathrm{C}(1)-\mathrm{V}(1)-\mathrm{Rc}(1)$	$175.1(7)$
		$\mathrm{P}(2)-\mathrm{O}(2)-\mathrm{Re}(1)$	$150.5(4)$

reduced from $\mathrm{Re}(\cdot 7)$ in 4 to $\operatorname{Re}(15)$ in 5 . It is worth noting that the strongly bound imido ligand ($\mathrm{N}-\mathrm{C}_{6} \mathrm{I}_{3}-i-\mathrm{Pr}_{2}$) has been replaced during the reaction. Unfortunately, we cannot
give an explanation for these reactivities, the imido abstraction and the Re metal reduction.

In ${ }^{1} \mathrm{H}$ NMR spectra of 5 , methyl protons of PMe_{3} exhibit a triplet at $\delta 1.642\left(I_{\text {P. H }}-4.6 \mathrm{~Hz}\right)$, because of their virtual coupling to the two trans phosphorus nuclei. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectra of 5 exhibit a triplet at $\delta 12.8\left(J_{\text {p.c }}-66.8 \mathrm{~Hz}\right)$, also because of the virtual coupling of the carbon nucleus to the

two phosphorus nuclei. ${ }^{25}$ As expected, ${ }^{31} P\left\{{ }^{1} H\right\}-N M R$ spectra of 5 exhibit a singlet at $\delta-40.7$.

Structure. Molecular structures with their atomic numbering schemes for 2, 5, and $\mathbf{6}$ are shown in Figures 1-3. The coordination sphere of the Re metal in 2 can be described as a slightly distorted octahedron. Compound 2 has an NPh group, three mer-Cl atoms, and two trans- $\mathrm{P}(\mathrm{OMe}$): ligands. The equatorial plane, defined by $\mathrm{Re}, \mathrm{N}, \mathrm{ClI}, \mathrm{Cl} 2$, and Cl 3 , is nearly planar with the average atomic displacement from the least-squares plane not exceeding $0.074 \AA$. The dihedral

Figure 1. ORTEP drawing ${ }^{28}$ of 2 showing the atom-labeling scheme and 50% probability thermal ellipsoids.

Figure 2. ORTEP drawing of 5.

Figure 3. ORTLP drawing of 6 .
angle between the equatorial plane and the imido phenyl ring ($\mathrm{Cl}-\mathrm{C} 6$) is $19.0(4)^{\circ}$.
The coordination sphere of the Re metal in $\mathbf{5}$ can also be described as a slightly distorted octahedron. Compound $\mathbf{5}$ has an NAr group, three mer-Cl atoms, and two trans-PMe ${ }_{3}$ groups. The equatorial plane, defined by $\mathrm{Re}, \mathrm{NI}, \mathrm{Cl1}, \mathrm{Cl} 2$, and Cl 3 , is essentially planar with the average atomic displacement of $0.002 \AA$.
The coordination sphere of the Re metal in 6 can be described as a slightly distorted octahedron. Compound 6 has an NAr group, three mer-Cl atoms. and one PMe_{s} group trans to Cl , and one $\mathrm{OP}^{\prime} \mathrm{Me}_{3}$ group trans to the imido ligand (NAr). The equatorial plane, defined by $\mathrm{Pl}, \mathrm{Cl1}, \mathrm{Cl} 2$, and Cl 3 , is nearly planar with the average atomic displacement of $0.016 \AA$. The Re metal lies $0.258 \AA$ above this plane.
Of particular interest are the bonding parameters of the Re-N-C bond. The Re-N-C bond angles of $172.4(5)^{\circ}$ $177.5(6)^{\circ}$ in $\mathbf{2 , 5}$, and $\mathbf{6}$, are fairly typical of phenyl imido ligands in high oxidation state complexes, in which the metal is relatively electron-deficient and some π bonding between the imido nitrogen atom and the metal is likely. ${ }^{1}$ These angles, therefore, indicate that the imido groups in $\mathbf{2 , 5}$, and 6. are linear and the Re-N bonds have a triple bond character
with an $s p$-hybrid nitrogen. The Re-N bond distance of $1.680(7)-1.721(6) \AA$ are also consistent with those found for aryl imido ligands coordinated to thenium. ${ }^{3}$ All the Re-P and $\mathrm{Re}-\mathrm{C}$ bond distances are within the ranges for known $\mathrm{Re}(\mathrm{V})$ complexes. ${ }^{26}$

Property. Any sign of reaction has not been observed in reactions of $\mathbf{2}$ with inild alkylating reagents such as $\mathrm{ZnMe} 2_{2}$, $\mathrm{ZnEt}_{2}, \mathrm{AlMe}_{3}$, and AlEts. Moreover, 2 does not react with strong carbon nucleophiles such as LiCp. NaCp. TlCp, $\mathrm{NaCp}^{*}\left(\mathrm{Cp}=\mathrm{C}_{5} \mathrm{H}_{5} . \mathrm{Cp}^{*}=\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ and Grignard reagents ($\mathrm{MeMgBr}, \mathrm{EtMgBr}$) even under vigorous conditions (refluxing toluene). Compound $\mathbf{2}$ is also inert toward hydrides ($\mathrm{LiBEt}_{3} \mathrm{H}$, $\mathrm{LiBEt}_{5} \mathrm{D}$). In constrast to $\mathbf{2}$, compound $\mathbf{5}$ reacts with Grignard reagents, although it does not react $\angle n R_{2}$, $\mathrm{AlR}_{3}, \mathrm{MCp}(\mathrm{M}=\mathrm{Li}, \mathrm{Cp}, \mathrm{Tl}) . \mathrm{NaCp}^{*}$, or hydrides. Unfortunately, reactions of $\mathbf{5}$ with $\mathrm{RMgBr}(\mathrm{R}=\mathrm{Me}$, Et) gave too many intractable species and therefore we could not obtain meaningful spectral data.
Compound 5 is gradually oxidized to mer- $\mathrm{Re}\left(\mathrm{N}_{-}-\mathrm{C}_{6} \mathrm{H}_{3}-i-\right.$ $\left.\mathrm{Pr}_{2}\right)\left(\mathrm{PMe}_{3}\right)\left(\mathrm{OPMe}_{3}\right) \mathrm{Cl}_{3}, \mathbf{6}$, when the recrystallization of $\mathbf{5}$ is attempted from benzene-pentane (eq 6). It is interesting to note that only one of the both PMes ligands in $\mathbf{5}$ has been converted to the corresponding phosphine oxide (OPMe_{3}) and the inutual orientation of the phosphines has also been changed from trans to cis. If the Re metal is thought of as having a formal oxidation state of +5 and if the imido group is thought of as acting as a four-electron donor, then $\mathbf{5}$ can be described as a saturated, 18 -electron complex, and therefore this reaction $(\mathbf{5} \rightarrow \mathbf{6})$ is likely to involve a dissociative fashion. In addition, the intermediate, probably formed by $\mathrm{PMe}_{\text {: }}$ dissociation, seems to have undergone pseudo-rotation, considering the cis orientation of the $\mathrm{PMe}_{\text {s }}$ and OPMes s ligands in 6. In order to get some insight into the mechanism for the formation of 6 , compound 5 has been treated with excess (10 fold) $\mathrm{O}=\mathrm{PPh}$, but no reaction has occurred.

In 'H NMR spectra of 6 , methyl protons of OPMes exhibit a doublet at $\delta 1.709\left(J_{p-11}=13.0 \mathrm{~Hz}\right)$, and those of PMe; a doublet at $\delta 1.547\left(J_{p-11}=16.0 \mathrm{~Hz}\right)$. In ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectra of 6, the OPMe; carbons exhibit a doublet at $\delta 16.4$ $\left(J_{p C C}=71.1 \mathrm{~Hz}\right)$ and PMes carbons also a doublet at $\delta 15.3$ $\left(J_{P-C}=35.5 \mathrm{~Hz}\right)$. As expected, ${ }^{\text {I }} \mathrm{P}\{$ ' H$\}$-NMR spectra of 6 exhibit two phosphorus resonances at $\delta 65.3$ (d, $J_{p-p}=8.5$ Hz) for OPMes and $\delta-39.5\left(\mathrm{~d}, J_{p-\mathrm{p}}=8.5 \mathrm{~Hz}\right)$ for PMes. The strong IR band at $1107 \mathrm{~cm}^{-1}$ is assigned to the $\mathrm{P}=\mathrm{O}$ bond in OPMe:.
Recently, Bergman and his coworkers reported an insertion of CO into an $\mathrm{Ir}=\mathrm{N}$ bond in $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(=\mathrm{N}^{\prime} \mathrm{Bu}\right)$, which is the first carbonylation of a terminal imido ligand to give an isocyanate complex. ${ }^{27}$ These results prompted us to investigate the possibility of the CO insertion into Re -imido bonds in
our compounds. However no reactions of $\mathbf{2 , 3}$, or $\mathbf{5}$ with CO have been observed

In summary. several bisphosphine- and bisphosphite-substiluted Re -imido complexes have been prepared from $\mathrm{Re}(\mathrm{NPh})$ $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{3}$. 1. and $\mathrm{Rc}\left(\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{3}-i-\mathrm{Pr}_{2}\right) \mathrm{Cl}_{3}(\mathrm{py})$. 4. Vigorous reaction conditions (refluxing bentene solutions) are required for reactions of 1 with $\mathrm{P}(\mathrm{OMc})$; or PEt . whereas mild conditions (rom-temperalure benzene solutions) for reactions of 4 with $\mathrm{PMe}_{\text {; }}$. All the products are air-stable in the solid state. but they are air-sensitive in solution. For example. 5 is converted to 6 on exposure to air during recrystallization and therefore the contact of solutions of the products with air should be ayoided. Compound $\mathbf{2}$ is remarkably inert to carbon nuclcophiles ($\mathrm{ZnR}_{2}: \mathrm{R}=\mathrm{Mc}$. Et: $\mathrm{AlR}_{3}: \mathrm{R}=\mathrm{Mc}$. Et: $\left.\mathrm{RMgBr}: \mathrm{R}=\mathrm{Mc} . \mathrm{Et}: \mathrm{MCp}: \mathrm{M}=\mathrm{Li} . \mathrm{Na} . \mathrm{Tl}: \mathrm{NaCp}{ }^{*}\right)$ and hydrides ($\mathrm{LiBEt}_{3} \mathrm{H} . \mathrm{LiBE}_{3} \mathrm{D}$).
Acknowledgment. This work is based on rescarch sponsored by the Korea Ministry of Education under grant BSRI-98-3420.

Supplementary Material Available. Tables of bond distances and bond angles. anisotropic thermal parameters. positional parameters for bydrogen atoms (12 pages): listings of observed and calculated structure factors (19 pages). Supplementary materials are available from one of the authors (S.W. Lcc) upon request.

References

1. Wigley. D. E. Prog Inorg Chem. 1994, f2, 239.
2. I.in, 7.i. Hall, M. B. Coord. (hem. Rev: 1993, 123, 149.
3. Nugent, W. A. Metal-Ligand Mhtiple Bonds: Tohn Wilely and Sons: New York, 1988
4. Chishom, M. H.: Rothwell, I. P. Comprehensive (oordination Chemistry, Wilkinson, G.: Gillard R. D: McCleverty, J. A., Purgamon: Oxtord, Fingland, 1987: Vol. 2, pl 161.
5. Nugent, W. A.: Ilavmore, B. L. Coord. Chem. Rev. 1980 , 31, 123.
6. Cenimi, S: La Morica (i. Inory, Chim. Acta 1976, I8, 279.
7. Cundati. I. R. J. Im. Chem. Soc. 1992, IH, 7879.
8. Massey, S. T.: Mansour, B.: Mctwee-White, L. /. Organomet. (Chem. 1995, $485,123$.
9. Arndtsen, A.: Sleiman, H. F.: Chang, A. K.: McElweeWhite, L. J. Am. Chem. Soc 1991, /15, 4871.
10. Saravanamuthu, A.: 1/O, D. M.: Kerr, M. E.: Fitzgerald C.: Bruce, M. R. M. Inorg. (hom. 1993, 32, 2202
11. Bradley, D. C.: Hodge, S. R.: Rumaeles, J. D: Hughes, M.: Mason. T.: Richard, R. I.. J. (hem. Soc., Dalton Trans. 1992. 1663
12. Minelli, M.: Carson, M. R.: Whisenhunt, D. W.: Inhol, W. Hutter G. Inofg. Chem. 1990, 29, 4801
13. Sloan O. D: Themton, P. Polyhedron 1988, 7. 329.
14. Goeden, G. V.: I Iaymore, B. L. Inong. Chem. 1983, 22, 157.
15. Nugent, W. A.: Harlow, R. L.: McKinney, R. I. J. Am. Chem. Soc. 1979, JOI, 7265.
16. Haymore, B. L.: Maatta, E. A.: Wentworth, R. A. J. Am Chem. Soc. 1979, I0I, 2063.
17. Kim, Y.-W: Jung, J.-H.: Park, H.-S: I ee, S. W. Bull. Korean (hem. Soc. 1994, /5, 891
18. Kim, Y-W. Jung, J.-H.: Ice, S. W. Bull. Korean Chem. Soc. 1994, 15,150
19. Park, B.-G.: Kim, Y.-W. Jung, G.-S.: Park, H.-S.: I.ee, S. W. Bull. Korean (hem. Soc: 1995, 16, 835.
20. Jhonson, N. P.: Lock, C. J.: Wilkinson, G. Inory. Sywh. 1967, 9, 145.
21. I lorton, A. D.: Schrock, R. R. Pohnhedron 1988, 7, 1841.
22. Toreki, R.: Schrock, R. R.: Davis, W. M. J. Am. Chem. Soc: 1992, 1Ht, 3367.
23. Sheldrick. G. M. Acta Cinstallog: 1990, 146, 467.
24. Sheldrick. (G. M. SHELLYL-93: University of Götlingen 1993
25. Crabtree, R. H. The Organometallic (hemisty' of the Transition Hetals: 2nd ed.: John Wilely and Sons: New York. 1994, p 237
26. Orpen, A. G... Brammer I.... Allen, F. H.. Kennard: O.: Watson, D. (.: Taylor, R. J. Chem. Soc:, Daton Trans. 1989. S'l.
27. Glueck, D. S.: Wu, I.: I Iollander, F. J.: Bergman. R. G. J. Am. Chem. Soc. 1991, M3, 2041.
28. Farrugia, L. J. ORTET-3 for Windows: University of Glasgow: 1997.

[^0]: *To whom correspondence should be addressed. Tel: 0331-2907066, Fax: 0331-290-7075, e-mail: swlee(ochem.skku.ac.kr.

